Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 476(2025)

Communication technology based on Rydberg atoms

XIAO Shengxian, ZHANG Jiachen, WANG Tao*, and ZHANG Xuefeng
Author Affiliations
  • College of Physics, Chongqing University, Chongqing 401331, China
  • show less
    References(61)

    [1] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [2] Fan H Q, Kumar S, Sedlacek J et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 202001(2015).

    [3] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).

    [4] Liu B, Zhang L H, Liu Z K et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 1, 0020151(2023).

    [5] Yuan J P, Yang W G, Jing M Y et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 86, 106001(2023).

    [6] Zhang H, Ma Y, Liao K Y et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems[J]. Science Bulletin, 69, 1515-1535(2024).

    [7] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 77, 633-673(2005).

    [8] Liao K Y, Tu H T, Yang S Z et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 101, 053432(2020).

    [10] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).

    [11] Schlossberger N, Prajapati N, Berweger S et al. Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers[J]. Nature Reviews Physics, 6, 606-620(2024).

    [12] Simons M T, Artusio-Glimpse A B, Holloway C L et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 104, 032824(2021).

    [13] Berweger S, Prajapati N, Artusio-Glimpse A B et al. Rydberg-state engineering: Investigations of tuning schemes for continuous frequency sensing[J]. Physical Review Applied, 19, 044049(2023).

    [14] Liu X H, Liao K Y, Zhang Z X et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 18, 054003(2022).

    [15] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).

    [16] Hu J L, Li H Q, Song R et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 121, 014002(2022).

    [17] Song D N, Jiao Y C, Hu J L et al. Continuous broadband Rydberg receiver using AC Stark shifts and Floquet states[J]. Applied Physics Letters, 125, 194001(2024).

    [18] Deb A B, Kjærgaard N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 112, 211106(2018).

    [19] Holloway C L, Simons M T, Gordon J A et al. Atom-based RF electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).

    [20] Šibalić N, Adams C S[M]. Rydberg Physics(2018).

    [21] Harris S E. Lasers without inversion: Interference of lifetime-broadened resonances[J]. Physical Review Letters, 62, 1033-1036(1989).

    [22] Imamoğlu A, Harris S E. Lasers without inversion: Interference of dressed lifetime-broadened states[J]. Optics Letters, 14, 1344-1346(1989).

    [23] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [24] Holloway C L, Simons M T, Gordon J A et al. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 121, 233106(2017).

    [25] Jiao Y C, Han X X, Fan J B et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).

    [26] Meyer D H, Cox K C, Fatemi F K et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 112, 211108(2018).

    [27] Holloway C L, Simons M T, Gordon J A et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 18, 1853-1857(2019).

    [28] Anderson D A, Sapiro R E, Gonçalves L F et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 17, 044020(2022).

    [29] Simons M T, Haddab A H, Gordon J A et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 7, 164975-164985(2019).

    [30] Song Z F, Liu H P, Liu X C et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).

    [31] Holloway C L, Simons M T, Haddab A H et al. A "real-time" guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP Advances, 9, 065110(2019).

    [32] Holloway C L, Simons M T, Haddab A H et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 63, 63-76(2021).

    [33] Robinson A K, Prajapati N, Senic D et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 118, 114001(2021).

    [34] Yang K, Sun Z S, Mao R Q et al. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 20, 081203(2022).

    [35] Li H Q, Hu J L, Bai J X et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 30, 13522-13529(2022).

    [36] Prajapati N, Rotunno A P, Berweger S et al. TV and video game streaming with a quantum receiver: A study on a Rydberg atom-based receiver's bandwidth and reception clarity[J]. AVS Quantum Science, 4, 035001(2022).

    [37] Liu Z K, Zhang L H, Liu B et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 13, 1997(2022).

    [38] Lin Y Y, She Z Y, Chen Z W et al. Terahertz receiver based on room-temperature Rydberg-atoms[J]. Fundamental Research, 5, 970-974(2025).

    [39] Elgee P K, Hill J C, LeBlanc K J E et al. Satellite radio detection via dual-microwave Rydberg spectroscopy[J]. Applied Physics Letters, 123, 084001(2023).

    [40] Berweger S, Artusio-Glimpse A B, Rotunno A P et al. Closed-loop quantum interferometry for phase-resolved Rydberg-atom field sensing[J]. Physical Review Applied, 20, 054009(2023).

    [41] Meyer D H, Hill J C, Kunz P D et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 19, 014025(2023).

    [42] You S H, Cai M H, Zhang H A et al. Exclusive effect in Rydberg atom-based multi-band microwave communication[J]. Photonics, 10, 328(2023).

    [43] Zhang P, Yuan S X, Jing M Y et al. Image transmission utilizing amplitude modulation in Rydberg atomic antenna[J]. IEEE Photonics Journal, 16, 3000307(2024).

    [44] Zhang L H, Liu B, Liu Z K et al. Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules[J]. Chip, 3, 100089(2024).

    [45] Yuan S X, Jing M Y, Zhang H et al. Isotropic antenna based on Rydberg atoms[J]. Optics Express, 32, 8379-8388(2024).

    [46] Du Y J, Lyu Z Y, He J et al. Terahertz communication technology based on room-temperature Rydberg atomic antennas[C](2024).

    [47] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).

    [48] Shannon C E. Communication in the presence of noise[J]. Proceedings of the I.R.E, 37, 10-21(1949).

    [49] Bohaichuk S M, Booth D, Nickerson K et al. Origins of Rydberg-atom electrometer transient response and its impact on radio-frequency pulse sensing[J]. Physical Review Applied, 18, 034030(2022).

    [50] Knarr S H, Bucklew V G, Langston J et al. Spatiotemporal multiplexed Rydberg receiver[J]. IEEE Transactions on Quantum Engineering, 4, 3500108(2023).

    [51] Yang B W, Yan Y H, Li X J et al. Highly sensitive microwave electrometry with enhanced instantaneous bandwidth[J]. Physical Review Applied, 21, L031003(2024).

    [52] Kumar S, Fan H Q, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [53] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).

    [54] Holloway C L, Prajapati N, Artusio-Glimpse A B et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 120, 204001(2022).

    [55] Cai M H, You S H, Zhang S S et al. Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states[J]. Applied Physics Letters, 122, 161103(2023).

    [56] Wu S H, Zhang D, Li Z C et al. Quantum-enhanced electrometer based on microwave-dressed Rydberg atoms[J]. Physical Review Applied, 20, 064028(2023).

    [57] Tu H T, Liao K Y, Wang H L et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[J]. Science Advances, 10, eads0683(2024).

    [58] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).

    [59] Carr C, Ritter R, Wade C G et al. Nonequilibrium phase transition in a dilute Rydberg ensemble[J]. Physical Review Letters, 111, 113901(2013).

    [60] Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 19, 1163-1175(1948).

    [61] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).

    Tools

    Get Citation

    Copy Citation Text

    Shengxian XIAO, Jiachen ZHANG, Tao WANG, Xuefeng ZHANG. Communication technology based on Rydberg atoms[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 476

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on...

    Received: Dec. 27, 2024

    Accepted: --

    Published Online: Jul. 31, 2025

    The Author Email: Tao WANG (tauwaang@cqu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2025.04.004

    Topics