Optical Instruments, Volume. 44, Issue 4, 87(2022)
Research status and development of low sampling ghost imaging
[1] MORRIS P A, ASPDEN R S, BELL J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).
[2] LIU X L, SHI J H, WU X Y, et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018).
[3] LIU X L, SHI J H, SUN L, et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020).
[4] SCHORI A, SHWARTZ S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).
[6] RADWELL N, MITCHELL K J, GIBSON G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).
[8] SHREKENHAMER D, WATTS C M, PADILLA W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).
[10] PITTMAN T B, SHIH Y H, STREKALOV D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).
[11] BENNINK R S, BENTLEY S J, BOYD R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[12] DENG C J, PAN L, WANG C L, et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 5, 431-435(2017).
[13] XU Y K, LIU W T, ZHANG E F, et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Optics Express, 23, 32993-33000(2015).
[14] SHIH Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).
[15] SHAPIRO J H, BOYD R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).
[16] CHEN M L, LI E R, HAN S S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints[J]. Applied Optics, 53, 2924-2928(2014).
[17] PHILLIPS D B, SUN M J, TAYLOR J M, et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).
[18] SUN M J, MENG L T, EDGAR M P, et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017).
[19] YU W K, LIU Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 19, 5135(2019).
[20] YU W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, 4122(2019).
[21] VAZ P G, AMARAL D, FERREIRA L F R, et al. Image quality of compressive single-pixel imaging using different Hadamard orderings[J]. Optics Express, 28, 11666-11681(2020).
[22] YU X, YANG F, GAO B, et al. Deep compressive single pixel imaging by reordering hadamard basis: a comparative study[J]. IEEE Access, 8, 55773-55784(2020).
[23] YUAN A Y, FENG J, JIAO S M, et al. Adaptive and dynamic ordering of illumination patterns with an image dictionary in single-pixel imaging[J]. Optics Communications, 481, 126527(2021).
[24] FERRI F, MAGATTI D, LUGIATO L A, et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).
[25] SUN B Q, WELSH S S, EDGAR M P, et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).
[26] YAO X R, YU W K, LIU X F, et al. Iterative denoising of ghost imaging[J]. Optics Express, 22, 24268-24275(2014).
[27] SUN S, LIU W T, GU J H, et al. Ghost imaging normalized by second-order coherence[J]. Optics Letters, 44, 5993-5996(2019).
[28] YANG Z, LIU J, ZHANG W X, et al. Instant single-pixel imaging: on-chip real-time implementation based on the instant ghost imaging algorithm[J]. OSA Continuum, 3, 629-636(2020).
[29] KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[30] ZHANG C, GUO S X, CAO J S, et al. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 22, 30063-30073(2014).
[31] KANG Y, YAO Y P, KANG Z H, et al. Performance analysis of compressive ghost imaging based on different signal reconstruction techniques[J]. Journal of the Optical Society of America A, 32, 1063-1067(2015).
[32] HUANG H Y, ZHOU C, TIAN T, et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).
[33] SHIMOBABA T, ENDO Y, NISHITSUJI T, et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).
[34] WANG F, WANG H, WANG H C, et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).
[35] WU H, WANG R Z, ZHAO G P, et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).
[36] WU H, ZHAO G P, CHEN M Y, et al. Hybrid neural network-based adaptive computational ghost imaging[J]. Optics and Lasers in Engineering, 140, 106529(2021).
[37] GAO W, YAN Q R, ZHOU H L, et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning[J]. Optics Express, 29, 5552-5566(2021).
[38] WANG F, WANG C L, CHEN M L, et al. Far-field super-resolution ghost imaging with a deep neural network constraint[J]. Light:Science & Applications, 11, 1(2022).
Get Citation
Copy Citation Text
Quanchao ZHAO, Zhenming YANG, Xu CHEN, Chunfang WANG, Dawei ZHANG. Research status and development of low sampling ghost imaging[J]. Optical Instruments, 2022, 44(4): 87
Category: REVIEW
Received: Jan. 26, 2022
Accepted: --
Published Online: Oct. 19, 2022
The Author Email: Chunfang WANG (cfwang@usst.edu.cn)