Infrared and Laser Engineering, Volume. 51, Issue 10, 20220003(2022)

Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology

Yujia Li1,2, Xiaoqing Zhou1, Guoyuan Li1, Jinquan Guo1, Yue Ma3, and Yifu Chen4
Author Affiliations
  • 1Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of P.R.China , Beijing 100048, China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3School of Electronic Information, Wuhan University, Wuhan 430072, China
  • 4School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
  • show less
    References(59)

    [1] [1] Simm J D, Brampton A H, Beech N W, et al. Beach Management Manual[M]. London: CIRIA London, 1996.

    [2] [2] Zhang Guoqing. China lake dataset (1960s2020)[EBDB]. Beijing: National Tibetan Plateau Data Center, 2019. (in Chinese)

    [4] [4] Amante C, Eakins B W. ETOPO1 arcminute global relief model: procedures, data sources analysis. NOAA Technical Memum NESDIS NGDC24[Z]. Boulder, Co.: National Geophysical Data Center, NOAA, 2009.

    [6] R J Nicholls, A Cazenave. Sea-level rise and its impact on coastal zones. Science, 328, 1517-1520(2010).

    [7] S Narayan, M W Beck, B G Reguero, et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PloS One, 11, e0154735(2016).

    [8] L Janowski, K Trzcinska, J Tegowski, et al. Nearshore benthic habitat mapping based on multi-frequency, multibeam echo-sounder data using a combined object-based approach: A case study from the Rowy site in the southern Baltic sea. Remote Sensing, 10, 1983(2018).

    [9] G Casal, P Harris, X Monteys, et al. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience & Remote Sensing, 57, 271-286(2020).

    [10] H Kim, S B Lee, K S Min. Shoreline change analysis using airborne LiDAR bathymetry for coastal monitoring. Journal of Coastal Research, 79, 269-273(2017).

    [11] E C Geyman, A C Maloof. A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type. Earth and Space Science, 6, 527-537(2019).

    [12] R A Garcia, L I Mckinna, J D Hedley, et al. Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise. Limnology and Oceanography: Methods, 12, 651-669(2014).

    [13] T Kutser, E Vahtmae, G Martin. Assessing suitability of multi-spectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuarine, Coastal and Shelf Science, 67, 521-529(2006).

    [14] Y Ma, N Xu, Z Liu, et al. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sensing of Environment, 250, 112047(2020).

    [15] T Kutser, J Hedley, C Giardino, et al. Remote sensing of shallow waters–A 50 year retrospective and future directions. Remote Sensing of Environment, 240, 111619(2020).

    [16] A Renga, G Rufino, M D’errico, et al. SAR bathymetry in the Tyrrhenian sea by COSMO-SkyMed data: A novel approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2834-2847(2014).

    [17] M K Mishra, D Ganguly, P Chauhan. Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data. IEEE Geoscience and Remote Sensing Letters, 11, 671-675(2013).

    [18] L A Magruder, K M Brunt. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission. IEEE Transactions on Geoscience and Remote Sensing, 56, 2911-2918(2018).

    [19] C E Parrish, L A Magruder, A L Neuenschwander, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sen-sing, 11, 1634(2019).

    [20] [20] Neumann T A, Brenner A, Hancock D, et al. ATLASICESat2 L2 A global geolocated photon data, version 3[Z]. Boulder, Co.: NASA National Snow Ice Data Center Distributed Active Archive Center, 2020.

    [21] L Magruder, T Neumann, N Kurtz. ICESat-2 early mission synopsis and observatory performance. Earth and Space Science, 8, e2020EA001555(2021).

    [22] L Magruder, K Brunt, T Neumann, et al. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter. Earth and Space Science, 8, e2020EA001414(2021).

    [23] M F Jasinski, J D Stoll, W B Cook, et al. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL). Journal of Coastal Research, 76, 44-55(2016).

    [24] N A Forfinski-sarkozi, C E Parrish. Analysis of MABEL bathymetry in Keweenaw Bay and implications for ICESat-2 ATLAS. Remote Sensing, 8, 772(2016).

    [25] N Xu, Y Ma, W Zhang, et al. Monitoring annual changes of lake water levels and volumes over 1984–2018 using landsat imagery and ICESat-2 data. Remote Sensing, 12, 4004(2020).

    [26] C Liu, J Qi, J Li, et al. Accurate refraction correction—assisted bathymetric inversion using ICESat-2 and multispectral data. Remote Sensing, 13, 4355(2021).

    [27] Y Ma, S Li, W Zhang, et al. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors. Optics express, 26, 15924-15934(2018).

    [28] W Zhang, N Xu, Y Ma, et al. A maximum bathymetric depth model to simulate satellite photon-counting lidar performance. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 182-197(2021).

    [29] S C Popescu, T Zhou, R Nelson, et al. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sensing of Environment, 208, 154-170(2018).

    [30] Y Chen, Y Le, D Zhang, et al. A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering. Remote Sensing of Environment, 256, 112326(2021).

    [31] [31] Magruder L A, Wharton III M E, Stout K D, et al. Noise filtering techniques f photoncounting ladar data[C]Laser Radar Technology Applications XVII. International Society f Optics Photonics, 2012, 8379: 83790Q.

    [32] K M Brunt, T A Neumann, K M Walsh, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission. IEEE Geoscience and Remote Sensing Letters, 11, 935-939(2013).

    [33] [33] Chen B, Pang Y. A denoising approach f detection of canopy ground from ICESat2’s airbne simulat data in Maryl, USA[C]AOPC 2015: Advances in Laser Technology Applications, 2015, 9671: 96711S.

    [34] [34] Zhang J, Kerekes J, Csatho B, et al. A clustering approach f detection of ground in micropulse photoncounting LiDAR altimeter data[C]2014 IEEE Geoscience Remote Sensing Symposium, IEEE, 2014: 177–180.

    [35] X Wang, Z Pan, C Glennie. A novel noise filtering model for photon-counting laser altimeter data. IEEE Geoscience and Remote Sensing Letters, 13, 947-951(2016).

    [36] U C Herzfeld, T M Trantow, D Harding, et al. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data. IEEE Transactions on Geoscience and Remote Sensing, 55, 1874-1896(2017).

    [37] A Neuenschwander, K Pitts. The ATL08 land and vegetation product for the ICESat-2 mission. Remote Sensing of Environment, 221, 247-259(2019).

    [38] N A Forfinski-sarkozi, C E Parrish. Active-passive spaceborne data fusion for mapping nearshore bathymetry. Photo-grammetric Engineering & Remote Sensing, 85, 281-295(2019).

    [39] Y Ma, W Zhang, J Sun, et al. Photon-counting lidar: An adaptive signal detection method for different land cover types in coastal areas. Remote Sensing, 11, 471(2019).

    [40] Y Ma, R Liu, S Li, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar. Optics Express, 26, 24752-24762(2018).

    [41] C Xie, P Chen, D Pan, et al. Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using Sentinel-2 imagery. Remote Sensing, 13, 4303(2021).

    [42] H J Hsu, C Y Huang, M Jasinski, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 1-19(2021).

    [43] D R Lyzenga. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17, 379-383(1978).

    [44] R P Stumpf, K Holderied, M Sinclair. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48, 547-556(2003).

    [45] J M Kerr, S Purkis. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sensing of Environ-ment, 210, 307-324(2018).

    [46] Jianwen Jin, Guoyuan Li, Wei Sun, et al. Application status and prospect on water resources investigation and monitoring by satellite remote sensing. Bulletin of Surveying and Mapping, 7-10(2020).

    [47] I Caballero, R P Stumpf. Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel-2 A/B. Optics Express, 28, 11742-11766(2020).

    [48] Z Pan, C L Glennie, J C Fernandez-diaz, et al. Fusion of LiDAR orthowaveforms and hyperspectral imagery for shallow river bathymetry and turbidity estimation. IEEE Transactions on Geoscience and Remote Sensing, 54, 4165-4177(2016).

    [49] Yongming Liu, Ruru Deng, Yan Qin, et al. Data processing methods and applications of airborne LiDAR bathymetry. National Remote Sensing Bulletin, 21, 982-995(2017).

    [50] I Caballero, R P Stumpf. Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of Sentinel-2 A/B satellites mission. Remote Sensing, 12, 451(2020).

    [51] H A Fricker, P Arnat, K M Brunt, et al. ICESat-2 meltwater depth estimates: Application to surface melt on Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 48, e2020GL090550(2021).

    [52] B Cao, Y Fang, L Gao, et al. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery. International Journal of Remote Sensing, 42, 2783-2806(2021).

    [53] N Xu, X Ma, Y Ma, et al. Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6677-6685(2021).

    [54] A Albright, C Glennie. Nearshore bathymetry from fusion of sentinel-2 and ICESat-2 observations. IEEE Geoscience and Remote Sensing Letters, 18, 900-904(2020).

    [55] N Thomas, A P Pertiwi, D Traganos, et al. Space borne cloud-native satellite-derived bathymetry (SDB) models using ICESat-2 and Sentinel-2. Geophysical Research Letters, 48, e2020GL092170(2021).

    [56] B J Babbel, C E Parrish, L A Magruder. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications. Geophysical Research Letters, 48, e2020GL090629(2021).

    [57] Y Chen, Z Zhu, Y Le, et al. Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images. Optics Express, 29, 2411-2430(2021).

    [58] N Xu, Y Ma, J Yang, et al. Deriving tidal flat topography using ICESat-2 laser altimetry and Sentinel-2 imagery. GeophysicalResearch Letters, 49, e2021GL096813(2022).

    [59] Z Fair, M Flanner, K M Brunt, et al. Using ICESat-2 and operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere, 14, 4253-4263(2020).

    [60] [60] Datta R T, Wouters B. Supraglacial lake bathymetry automatically derived from ICESat2 constraining lake depth estimates from multisource satellite imagery[EBOL]. (20201022)[20211009]. https:www.essoar.gdoi10.1002essoar. 10504544.1: 1–26.

    [61] X Lu, Y Hu, Y Yang, et al. Enabling value added scientific applications of ICESat-2 data with effective removal of afterpulses. Earth and Space Science, 8, e2021-EA001729(2021).

    CLP Journals

    [1] Shanshan Li, Jiewei Yang, Tianxin Yang, Zhaoying Wang, Hengkang Zhang. Method for characterizing frequency of frequency-stabilized semiconductor lasers[J]. Infrared and Laser Engineering, 2023, 52(10): 20230063

    Tools

    Get Citation

    Copy Citation Text

    Yujia Li, Xiaoqing Zhou, Guoyuan Li, Jinquan Guo, Yue Ma, Yifu Chen. Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology[J]. Infrared and Laser Engineering, 2022, 51(10): 20220003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 30, 2021

    Accepted: Mar. 15, 2022

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220003

    Topics