Infrared and Laser Engineering, Volume. 51, Issue 10, 20220003(2022)

Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology

Yujia Li1,2, Xiaoqing Zhou1, Guoyuan Li1, Jinquan Guo1, Yue Ma3, and Yifu Chen4
Author Affiliations
  • 1Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of P.R.China , Beijing 100048, China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3School of Electronic Information, Wuhan University, Wuhan 430072, China
  • 4School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
  • show less
    References(59)

    [1] [1] Simm J D, Brampton A H, Beech N W, et al. Beach Management Manual[M]. London: CIRIA London, 1996.

    [2] [2] Zhang Guoqing. China lake dataset (1960s2020)[EBDB]. Beijing: National Tibetan Plateau Data Center, 2019. (in Chinese)

    [4] [4] Amante C, Eakins B W. ETOPO1 arcminute global relief model: procedures, data sources analysis. NOAA Technical Memum NESDIS NGDC24[Z]. Boulder, Co.: National Geophysical Data Center, NOAA, 2009.

    [6] Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones[J]. Science, 328, 1517-1520(2010).

    [7] Narayan S, Beck M W, Reguero B G, et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences[J]. PloS One, 11, e0154735(2016).

    [8] Janowski L, Trzcinska K, Tegowski J, et al. Nearshore benthic habitat mapping based on multi-frequency, multibeam echo-sounder data using a combined object-based approach: A case study from the Rowy site in the southern Baltic sea[J]. Remote Sensing, 10, 1983(2018).

    [9] Casal G, Harris P, Monteys X, et al. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models[J]. GIScience & Remote Sensing, 57, 271-286(2020).

    [10] Kim H, Lee S B, Min K S. Shoreline change analysis using airborne LiDAR bathymetry for coastal monitoring[J]. Journal of Coastal Research, 79, 269-273(2017).

    [11] Geyman E C, Maloof A C. A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type[J]. Earth and Space Science, 6, 527-537(2019).

    [12] Garcia R A, Mckinna L I, Hedley J D, et al. Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise[J]. Limnology and Oceanography: Methods, 12, 651-669(2014).

    [13] Kutser T, Vahtmae E, Martin G. Assessing suitability of multi-spectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations[J]. Estuarine, Coastal and Shelf Science, 67, 521-529(2006).

    [14] Ma Y, Xu N, Liu Z, et al. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets[J]. Remote Sensing of Environment, 250, 112047(2020).

    [15] Kutser T, Hedley J, Giardino C, et al. Remote sensing of shallow waters–A 50 year retrospective and future directions[J]. Remote Sensing of Environment, 240, 111619(2020).

    [16] Renga A, Rufino G, D’errico M, et al. SAR bathymetry in the Tyrrhenian sea by COSMO-SkyMed data: A novel approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2834-2847(2014).

    [17] Mishra M K, Ganguly D, Chauhan P. Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 11, 671-675(2013).

    [18] Magruder L A, Brunt K M. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 2911-2918(2018).

    [19] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sen-sing, 11, 1634(2019).

    [20] [20] Neumann T A, Brenner A, Hancock D, et al. ATLASICESat2 L2 A global geolocated photon data, version 3[Z]. Boulder, Co.: NASA National Snow Ice Data Center Distributed Active Archive Center, 2020.

    [21] Magruder L, Neumann T, Kurtz N. ICESat-2 early mission synopsis and observatory performance[J]. Earth and Space Science, 8, e2020EA001555(2021).

    [22] Magruder L, Brunt K, Neumann T, et al. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter[J]. Earth and Space Science, 8, e2020EA001414(2021).

    [23] Jasinski M F, Stoll J D, Cook W B, et al. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL)[J]. Journal of Coastal Research, 76, 44-55(2016).

    [24] Forfinski-sarkozi N A, Parrish C E. Analysis of MABEL bathymetry in Keweenaw Bay and implications for ICESat-2 ATLAS[J]. Remote Sensing, 8, 772(2016).

    [25] Xu N, Ma Y, Zhang W, et al. Monitoring annual changes of lake water levels and volumes over 1984–2018 using landsat imagery and ICESat-2 data[J]. Remote Sensing, 12, 4004(2020).

    [26] Liu C, Qi J, Li J, et al. Accurate refraction correction—assisted bathymetric inversion using ICESat-2 and multispectral data[J]. Remote Sensing, 13, 4355(2021).

    [27] Ma Y, Li S, Zhang W, et al. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors[J]. Optics express, 26, 15924-15934(2018).

    [28] Zhang W, Xu N, Ma Y, et al. A maximum bathymetric depth model to simulate satellite photon-counting lidar performance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 182-197(2021).

    [29] Popescu S C, Zhou T, Nelson R, et al. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data[J]. Remote Sensing of Environment, 208, 154-170(2018).

    [30] Chen Y, Le Y, Zhang D, et al. A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering[J]. Remote Sensing of Environment, 256, 112326(2021).

    [31] [31] Magruder L A, Wharton III M E, Stout K D, et al. Noise filtering techniques f photoncounting ladar data[C]Laser Radar Technology Applications XVII. International Society f Optics Photonics, 2012, 8379: 83790Q.

    [32] Brunt K M, Neumann T A, Walsh K M, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission[J]. IEEE Geoscience and Remote Sensing Letters, 11, 935-939(2013).

    [33] [33] Chen B, Pang Y. A denoising approach f detection of canopy ground from ICESat2’s airbne simulat data in Maryl, USA[C]AOPC 2015: Advances in Laser Technology Applications, 2015, 9671: 96711S.

    [34] [34] Zhang J, Kerekes J, Csatho B, et al. A clustering approach f detection of ground in micropulse photoncounting LiDAR altimeter data[C]2014 IEEE Geoscience Remote Sensing Symposium, IEEE, 2014: 177–180.

    [35] Wang X, Pan Z, Glennie C. A novel noise filtering model for photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 13, 947-951(2016).

    [36] Herzfeld U C, Trantow T M, Harding D, et al. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 1874-1896(2017).

    [37] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 221, 247-259(2019).

    [38] Forfinski-sarkozi N A, Parrish C E. Active-passive spaceborne data fusion for mapping nearshore bathymetry[J]. Photo-grammetric Engineering & Remote Sensing, 85, 281-295(2019).

    [39] Ma Y, Zhang W, Sun J, et al. Photon-counting lidar: An adaptive signal detection method for different land cover types in coastal areas[J]. Remote Sensing, 11, 471(2019).

    [40] Ma Y, Liu R, Li S, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar[J]. Optics Express, 26, 24752-24762(2018).

    [41] Xie C, Chen P, Pan D, et al. Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using Sentinel-2 imagery[J]. Remote Sensing, 13, 4303(2021).

    [42] Hsu H J, Huang C Y, Jasinski M, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 1-19(2021).

    [43] Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 17, 379-383(1978).

    [44] Stumpf R P, Holderied K, Sinclair M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography, 48, 547-556(2003).

    [45] Kerr J M, Purkis S. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data[J]. Remote Sensing of Environ-ment, 210, 307-324(2018).

    [46] Jin Jianwen, Li Guoyuan, Sun Wei, et al. Application status and prospect on water resources investigation and monitoring by satellite remote sensing[J]. Bulletin of Surveying and Mapping, 7-10(2020).

    [47] Caballero I, Stumpf R P. Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel-2 A/B[J]. Optics Express, 28, 11742-11766(2020).

    [48] Pan Z, Glennie C L, Fernandez-diaz J C, et al. Fusion of LiDAR orthowaveforms and hyperspectral imagery for shallow river bathymetry and turbidity estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4165-4177(2016).

    [49] Liu Yongming, Deng Ruru, Qin Yan, et al. Data processing methods and applications of airborne LiDAR bathymetry[J]. National Remote Sensing Bulletin, 21, 982-995(2017).

    [50] Caballero I, Stumpf R P. Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of Sentinel-2 A/B satellites mission[J]. Remote Sensing, 12, 451(2020).

    [51] Fricker H A, Arnat P, Brunt K M, et al. ICESat-2 meltwater depth estimates: Application to surface melt on Amery Ice Shelf, East Antarctica[J]. Geophysical Research Letters, 48, e2020GL090550(2021).

    [52] Cao B, Fang Y, Gao L, et al. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery[J]. International Journal of Remote Sensing, 42, 2783-2806(2021).

    [53] Xu N, Ma X, Ma Y, et al. Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6677-6685(2021).

    [54] Albright A, Glennie C. Nearshore bathymetry from fusion of sentinel-2 and ICESat-2 observations[J]. IEEE Geoscience and Remote Sensing Letters, 18, 900-904(2020).

    [55] Thomas N, Pertiwi A P, Traganos D, et al. Space borne cloud-native satellite-derived bathymetry (SDB) models using ICESat-2 and Sentinel-2[J]. Geophysical Research Letters, 48, e2020GL092170(2021).

    [56] Babbel B J, Parrish C E, Magruder L A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications[J]. Geophysical Research Letters, 48, e2020GL090629(2021).

    [57] Chen Y, Zhu Z, Le Y, et al. Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images[J]. Optics Express, 29, 2411-2430(2021).

    [58] Xu N, Ma Y, Yang J, et al. Deriving tidal flat topography using ICESat-2 laser altimetry and Sentinel-2 imagery[J]. GeophysicalResearch Letters, 49, e2021GL096813(2022).

    [59] Fair Z, Flanner M, Brunt K M, et al. Using ICESat-2 and operation IceBridge altimetry for supraglacial lake depth retrievals[J]. The Cryosphere, 14, 4253-4263(2020).

    [60] [60] Datta R T, Wouters B. Supraglacial lake bathymetry automatically derived from ICESat2 constraining lake depth estimates from multisource satellite imagery[EBOL]. (20201022)[20211009]. https:www.essoar.gdoi10.1002essoar. 10504544.1: 1–26.

    [61] Lu X, Hu Y, Yang Y, et al. Enabling value added scientific applications of ICESat-2 data with effective removal of afterpulses[J]. Earth and Space Science, 8, e2021-EA001729(2021).

    CLP Journals

    [1] Shanshan Li, Jiewei Yang, Tianxin Yang, Zhaoying Wang, Hengkang Zhang. Method for characterizing frequency of frequency-stabilized semiconductor lasers[J]. Infrared and Laser Engineering, 2023, 52(10): 20230063

    Tools

    Get Citation

    Copy Citation Text

    Yujia Li, Xiaoqing Zhou, Guoyuan Li, Jinquan Guo, Yue Ma, Yifu Chen. Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology[J]. Infrared and Laser Engineering, 2022, 51(10): 20220003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 30, 2021

    Accepted: Mar. 15, 2022

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220003

    Topics