Optics and Precision Engineering, Volume. 30, Issue 20, 2501(2022)

Multi-label infrared image classification algorithm based on weakly supervised learning

Chuankai MIAO1, Shuli LOU1、*, Ting LI2, and Huimin CAI2
Author Affiliations
  • 1School of Physics and Electronic Information, Yantai University, Yantai264005, China
  • 2Tianjin Jinhang Institute of Technical Physics, Tianjin300308, China
  • show less
    References(17)

    [1] WU J X, YANG H. Linear regression-based efficient SVM learning for large-scale classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 26, 2357-2369(2015).

    [2] [2] 2林春焕. 弱监督学习下的多标签图像分类[D]. 西安: 西安电子科技大学, 2019.LINC H. Multi-label Image Classification Under Weakly Supervised Learning[D]. Xi'an: Xidian University, 2019. (in Chinese)

    [3] SERMANET P, EIGEN D, ZHANG X et al. Overfeat: Integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint(2013).

    [4] WEI Y C, XIA W, LIN M et al. HCP: a flexible CNN framework for multi-label image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1901-1907(2016).

    [5] WANG J, YANG Y, MAO J H et al. CNN-RNN: a unified framework for multi-label image classification[C], 2285-2294(2016).

    [6] CHEN T S, XU M X, HUI X L et al. Learning semantic-specific graph representation for multi-label image recognition[C], 522-531(2019).

    [7] LANCHANTIN J, WANG T L, ORDONEZ V et al. General multi-label image classification with transformers[C], 16473-16483(2021).

    [8] CHENG X, LIN H Z, WU X Y et al. MLTR: multi-label classification with transformer[C], 1-6(2022).

    [9] LIU S, ZHANG L, YANG X et al. Query2Label: A Simple Transformer Way to Multi-Label Classification[J]. arXiv preprint arXiv:, 2021.

    [10] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [11] ZHU K, WU J X. Residual attention: a simple but effective method for multi-label recognition[C], 184-193(2021).

    [12] CUI Y, JIA M L, LIN T Y et al. Class-balanced loss based on effective number of samples[C], 9260-9269(2019).

    [13] WU T, HUANG Q Q, LIU Z W et al. Distribution-balanced Loss for Multi-label Classification in Long-tailed Datasets[M]. Computer Vision – ECCV 2020, 162-178(2020).

    [14] RIDNIK T, BEN-BARUCH E, ZAMIR N et al. Asymmetric loss for multi-label classification[C], 82-91(2021).

    [15] YE J, HE J J, PENG X J et al. Attention-driven Dynamic Graph Convolutional Network for Multi-label Image Recognition[M]. Computer Vision – ECCV 2020, 649-665(2020).

    [16] YOU R C, GUO Z Y, CUI L et al. Cross-modality attention with semantic graph embedding for multi-label classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12709-12716(2020).

    [17] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    CLP Journals

    [1] Shuxin LIU, Hui WU, Daihua WANG, Junchao SHE. Multimode composite guidance data fusion method and its experimental validation[J]. Optics and Precision Engineering, 2025, 33(4): 512

    [2] Shuxin LIU, Hui WU, Daihua WANG, Junchao SHE. Multimode composite guidance data fusion method and its experimental validation[J]. Optics and Precision Engineering, 2025, 33(4): 512

    Tools

    Get Citation

    Copy Citation Text

    Chuankai MIAO, Shuli LOU, Ting LI, Huimin CAI. Multi-label infrared image classification algorithm based on weakly supervised learning[J]. Optics and Precision Engineering, 2022, 30(20): 2501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 9, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: Shuli LOU (shulilou@sina.com)

    DOI:10.37188/OPE.20223020.2501

    Topics