Acta Photonica Sinica, Volume. 52, Issue 3, 0352122(2023)
High Sensitive Detection of Trace Gas Based on Photoacoustic Spectroscopy via a Hammer-shaped Quartz Tuning Fork
[1] SAMPAOLO A, PATIMISCO P, GIGLIO M et al. Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review[J]. Analytica Chimica Acta, 1202, 338894(2022).
[2] CHEN K, DENG H, GUO M et al. Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer[J]. Optics & Laser Technology, 123, 105894(2020).
[3] CHENG Gang, CHEN Jiajin, LIU Kun et al. Influence of cylindrical photoacoustic cell structure and environmental factors on acoustic eigenfrequency[J]. Acta Photonica Sinica, 49, 0230001(2020).
[4] SABERI M H, RABBANI A R. Origin of natural gases in the Permo-Triassic reservoirs of the Coastal Fars and Iranian sector of the Persian Gulf[J]. Journal of Natural Gas Science and Engineering, 26, 558-569(2015).
[5] PEREIRA J, PORTO-FIGURIRA P, CAVACO C et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview[J]. Metabolites, 5, 3-55(2015).
[6] HODGHINSON J, TATAM R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 24, 012004(2012).
[7] LIU X, CHENG S T, LIU H et al. A survey on gas sensing technology[J]. Sensors, 12, 9635-9665(2012).
[8] LI B, FENG C F, WU H P et al. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level[J]. Sensors and Actuators B: Chemical, 358, 131510(2022).
[9] LIU Y H, LIN H Y, ZHONG Y C et al. Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO2 in the greenhouse[J]. Photoacoustics, 25, 100332(2022).
[10] LIU Lixian, CHEN Baisong, YIN Xukun et al. Photoacoustic simultaneous detection of multiple trace gases for industrial park application[J]. Acta Physica Sinica, 71, 170701(2022).
[11] LI Yafei, LIU Zhiwei, ZHENG Chuantao et al. Development and application of near-infrared laser carbon dioxide gas sensor system[J]. Acta Optica Sinica, 40, 0514003(2020).
[12] RUCK T, BIERL R, MATYSIK F K. Development and characterization of a laboratory setup for photoacoustic NO2 determination based on the excitation of electronic [2B2 and 2B1] states using a low-cost semiconductor laser[J]. Sensors and Actuators A: Physical, 258, 193-200(2017).
[13] MA Zhuo, LI Yafei, ZHENG Chuantao et al. Infrared carbon monoxide sensor system for early fire detection[J]. Acta Photonica Sinica, 51, 0530002(2022).
[14] LIU K, MEI J X, ZHANG W J et al. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 251, 632-636(2017).
[15] WANG Z L, TIAN C W, QIAN S Y et al. A comprehensive dual-spectroscopy detection technique based on TDLAS and QEPAS using a quartz tuning fork[J]. Optics & Laser Technology, 145, 107483(2022).
[16] RAKOVSKY J, VOTAVA O. A simple photoacoustic detector for highly corrosive gases[J]. Review of Scientific Instruments, 88, 013103(2017).
[17] SEREBRYAKOV D V, MOROZOV I V, KOSTEREV A A et al. Laser microphotoacoustic sensor of ammonia traces in the atmosphere[J]. Quantum Electronics, 40, 167(2010).
[18] JIANG Meng, FENG Qiaoling, WEI Yufeng et al. Recent advance in miniaturization of photo-acoustic spectroscopy gas sensor[J]. Laser & Optoelectronics Progress, 52, 020006(2015).
[19] MA Y F. Recent advances in QEPAS and QEPTS based trace gas sensing: a review[J]. Frontiers in Physics, 8, 268(2020).
[20] PAO Y H[M]. Optoacoustic spectroscopy and detection(2012).
[21] MA Y F, QIAO S D, PATIMISCO P et al. In-plane quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 116, 061101(2020).
[22] YIN Xukun, GAO Miao, MIAO Ruiqi et al. Highly sensitive carbon monoxide gas sensors based on a difference photoacoustic cell (invited)[J]. Acta Photonica Sinica, 50, 1030002(2021).
[23] WU Hongpeng. Research on new quartz-enhanced photoacoustic spectroscopy technology[D](2017).
[24] CHENG Gang, CAO Yanan, LIU Kun et al. Influence of photoacoustic cell geometrical shape on the performance of photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 40, 2345-2351(2020).
[25] TITTEL F K, SAMPAOLO A, PATIMISCO P et al. Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy[J]. Optics Express, 24, A682-A692(2016).
[26] WU H P, DONG L, YIN X K et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration[J]. Sensors and Actuators B: Chemical, 297, 126753(2019).
[27] MA Y F. Review of recent advances in QEPAS-based trace gas sensing[J]. Applied Sciences, 8, 1822(2018).
[28] RUSSO S D, GIGLIO M, SAMPAOLO A et al. Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork[J]. Sensors, 19, 4109(2019).
[29] LI S Z, DONG L, WU H P et al. Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork[J]. Analytical Chemistry, 91, 5834-5840(2019).
[30] PATIMISCO P, SAMPAOLO A, DONG L et al. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing[J]. Sensors and Actuators B: Chemical, 227, 539-546(2016).
[31] PATIMISCO P, BORRI A, SAMPSOLO A et al. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. The Royal Society of Chemistry, 139, 2079-2087(2014).
[32] SAMPAOLO A, ATIMISCO P, PENNETTA R et al. New approaches in quartz-enhanced photoacoustic sensing[C], 9370, 177-183(2015).
[33] HIROSHI H, ITAO K, KURODA S. Damping characteristics of beam-shaped micro-oscillators[J]. Sensors and Actuators A: Physical, 49, 87-95(1995).
[34] PATIMISCO P, SAMPAOLO A, GIGLIO M et al. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy[J]. Optics Express, 27, 1401-1415(2019).
[35] SUN B, ZIFARELLI A, WU H P et al. Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level co detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork[J]. Analytical Chemistry, 92, 13922-13929(2020).
[36] MA Yufei, TONG Yao, ZHANG Ligong et al. Study on high sensitive detection of acetylene trace gas based on QEPAS[J]. Spectroscopy and Spectral Analysis, 37, 2869-2872(2017).
[37] SUN Shanwen, YI Hongming, LIU Kun et al. Impact of water on quartz enhanced photo-acoustic absorption spectroscopy methane senor performance[J]. Chinese Journal of Lasers, 39, 0715001(2012).
[38] LIU Yihua, ZHENG Huadan, YNAG Zhifei et al. All-solid-state mid-infrared fiber-coupled QEPAS photoacoustic detection module[J]. Acta Optica Sinica, 41, 2030001(2021).
[39] HU L, ZHENG C T, ZHENG J et al. Quartz tuning fork embedded off-beam quartzenhanced photoacoustic spectroscopy[J]. Optics Letters, 44, 2562-2565(2019).
[40] YAN Ge, ZHANG Lei, ZHENG Chuantao et al. Mid-infrared methane sensor system for natural gas leakage detection and its application[J]. Chinese Journal of Lasers, 49, 1810001(2022).
[41] CAO Y C, JIN W, HO H L. NIR diode laser-based QEPAS for acetylene detection[C], 8439, 573-579(2012).
Get Citation
Copy Citation Text
Zheng CHEN, Bo SUN, Lei DONG, Hongpeng WU. High Sensitive Detection of Trace Gas Based on Photoacoustic Spectroscopy via a Hammer-shaped Quartz Tuning Fork[J]. Acta Photonica Sinica, 2023, 52(3): 0352122
Category: Special Issue for Frontiers and Techniques of Laser Spectroscopy
Received: Dec. 12, 2022
Accepted: Feb. 13, 2023
Published Online: Jun. 21, 2023
The Author Email: Hongpeng WU (wuhp@sxu.edu.cn)