Acta Laser Biology Sinica, Volume. 33, Issue 6, 489(2024)

Research Progress in Synechococcus sp. PCC 11901: A Chassis Cell in Carbon-negative Synthetic Biology

BAO Wuxia1,2, SONG Kai1,2, PENG Yinghong1, XU Ping1,2, and HE Ya-Wen1,2、*
Author Affiliations
  • 1Carbon Negative Synthetic Biology for Biomaterial Production from CO2, Campus for Research Excellence and Technological Enterprise, SJTU Asia-Pacific Graduate Institute, Singapore 138602, Singapore
  • 2State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(37)

    [1] [1] LEA-SMITH D J, SUMMERFIELD T C, DUCAT D C, et al.Editorial: exploring the growing role of cyanobacteria in industrial biotechnology and sustainability[J]. Frontiers in Microbiology, 2021, 12: 725128.

    [2] [2] ZHANG Z, LOHR L, ESCALANTE C, et al. Food versus fuel: what do prices tell us?[J]. Energy Policy, 2010, 38: 445-451.

    [3] [3] WANG B, DAI Z. Engineering photosynthetic microbial consortia for carbon-negative biosynthesis[J]. Angewandte Chemie-international Edition, 2023, 62(17): e202217961.

    [4] [4] TAN C, XU P, TAO F. Carbon-negative synthetic biology: challenges and emerging trends of cyanobacterial technology[J]. Trends in Biotechnology, 2022, 40(12): 1488-1502.

    [5] [5] VAN BAALEN C. Studies on marine blue-green algae[J]. Botanica Marina, 1962, 4: 129-139.

    [6] [6] STANIER R Y, KUNISAWA R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2): 171-205.

    [7] [7] MIN H, GOLDEN S S. A new circadian class 2 gene, opcA, whose product is important for reductant production at night in Synechococcus elongatus PCC 7942[J]. Journal of Bacteriology, 2000, 182(21): 6214-6221.

    [8] [8] YU J, LIBERTON M, CLIFTEN P F, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO[J]. Scientific Reports, 2015, 5: 8132.

    [9] [9] LI Z, LI S, CHEN L, et al. Fast-growing cyanobacterial chassis for synthetic biology application[J]. Critical Reviews in Biotechnology, 2024, 44(3): 414-428.

    [10] [10] ANGERMAYR S A, PASZOTA M, HELLINGWERF K J. Engineering a cyanobacterial cell factory for production of lactic acid[J]. Applied And Environmental Microbiology, 2012, 78(19): 7098-7106.

    [11] [11] DEXTER J, FU P. Metabolic engineering of cyanobacteria for ethanol production[J]. Energy & Environmental Science, 2009, 2: 857-864.

    [12] [12] RUFFING A M. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 17.

    [13] [13] KATO A, TAKATANI N, IKEDA K, et al. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus[J]. Biotechnology for Biofuels, 2017, 10: 141.

    [14] [14] LUAN G, LU X. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnology Advances, 2018, 36(2): 430-442.

    [15] [15] WANG X, LIU W, XIN C, et al. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14225-14230.

    [16] [16] ENGLUND E, PATTANAIK B, UBHAYASEKERA S J, et al.Production of squalene in Synechocystis sp. PCC 6803[J]. PLoS One, 2014, 9(3): e90270.

    [17] [17] WODARCZYK A, SELO T T, NORLING B, et al.Unprecedented biomass and fatty acid production by the newly discovered cyanobacterium Synechococcus sp. PCC 11901[J]. bioRxiv, 2019. doi: http://dx.doi.org/10.1101/684944.

    [18] [18] WODARCZYK A, SELO T T, NORLING B, et al.Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production[J]. Communications Biology, 2020, 3(1): 215.

    [19] [19] BARKER M, DE VRIES R, NIELD J, et al. The deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle[J]. The Journal of Biological Chemistry, 2006, 281(41): 30347-30355.

    [20] [20] NOBLES D R, ROMANOVICZ D K, BROWN R M Jr. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?[J]. Plant Physiology, 2001, 127(2): 529-542.

    [21] [21] ZHANG T, LI S, CHEN L, et al. Extended toolboxes enable efficient biosynthesis of multiple products from CO2 in fast-growing Synechococcus sp. PCC 11901[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(44): 16186-16201.

    [22] [22] MILLS L A, MORENO-CABEZUELO J , WODARCZYK A, et al. Development of a biotechnology platform for the fast-growing cyanobacterium Synechococcus sp. PCC 11901[J]. Biomolecules, 2022, 12(7): 872.

    [23] [23] RAVINDRAN S, HAJINAJAF N, KUNDU P, et al. Genome-scale metabolic model reconstruction and investigation into the fluxome of the fast-growing cyanobacterium Synechococcus sp. PCC 11901[J]. ACS Synthetic Biology, 2024, 13(10): 3281-3294.

    [24] [24] MARKLEY A L, BEGEMANN M B, CLARKE R E, et al.Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002[J]. ACS Synthetic Biology, 2015, 4(5): 595-603.

    [25] [25] LEA-SMITH D J, VASUDEVAN R, HOWE C J. Generation of marked and markerless mutants in model cyanobacterial species[J]. Jove-journal of Visualized Experiments, 2016 (111): 54001.

    [26] [26] VICTORIA A J, SELO T T, MORENO-CABEZUELO J , et al. A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901[J]. Plant Physiology, 2024, 196(2): 1674-1690.

    [27] [27] YAO L, SHABESTARY K, BJRK S M, et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp. PCC 6803 for enhanced industrial phenotypes[J]. Nature Communications, 2020, 11(1): 1666.

    [28] [28] LIU D, JOHNSON V M, PAKRASI H B. A reversibly induced CRISPRi system targeting photosystem II in the cyanobacterium Synechocystis sp. PCC 6803[J]. ACS Synthetic Biology, 2020, 9(6): 1441-1449.

    [29] [29] DALLO T, KRISHNAKUMAR R, KOLKER S D, et al. High-density guide RNA tiling and machine learning for designing CRISPR interference in Synechococcus sp. PCC 7002[J]. ACS Synthetic Biology, 2023, 12(4): 1175-1186.

    [30] [30] OLIVER N J, RABINOVITCH-DEERE C A, CARROLL A L, et al. Cyanobacterial metabolic engineering for biofuel and chemical production[J]. Current Opinion in Chemical Biology, 2016, 35: 43-50.

    [31] [31] GAO Z, ZHAO H, LI Z, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria[J]. Energy & Environmental Science, 2012, 5: 9857.

    [32] [32] SAVAKIS P, TAN X, DU W, et al. Photosynthetic production of glycerol by a recombinant cyanobacterium[J]. Journal of Biotechnology, 2015, 195: 46-51.

    [33] [33] DURALL C, LINDBERG P, YU J, et al. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803[J]. Biotechnol Biofuels, 2020, 13: 16.

    [34] [34] LIN P C, ZHANG F, PAKRASI H B. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Scientific Reports, 2020, 10(1): 390.

    [35] [35] DIAO J, SONG X, ZHANG L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metabolic Engineering, 2020, 61: 275-287.

    [36] [36] DAVIES F K, WORK V H, BELIAEV A S, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 21.

    [37] [37] ZHANG X, LI M, AGRAWAL A, et al. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases[J]. Metabolic Engineering, 2011, 13(6): 713-722.

    Tools

    Get Citation

    Copy Citation Text

    BAO Wuxia, SONG Kai, PENG Yinghong, XU Ping, HE Ya-Wen. Research Progress in Synechococcus sp. PCC 11901: A Chassis Cell in Carbon-negative Synthetic Biology[J]. Acta Laser Biology Sinica, 2024, 33(6): 489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 10, 2024

    Accepted: Feb. 27, 2025

    Published Online: Feb. 27, 2025

    The Author Email: Ya-Wen HE (yawenhe@sjtu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.06.002

    Topics