Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061013(2020)

Hyperspectral Image Classification Algorithm Based on Space-Spectral Weighted Nearest Neighbor

Lei Ji1, Xin Zhang1、*, Limei Zhang2, and Zhang Wen1
Author Affiliations
  • 1College of Big Data and Information Engineering, Guizhou University, Guiyang Guizhou 550025, China
  • 2College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(11)
    Process of removing background point. (a) Original image; (b) random sample points; (c) non-nearest neighbor sample points; (d) processing non-nearest neighbor sample points; (e) filtered sample points
    Indian Pines dataset. (a) False-color image; (b) ground-type survey map;(c) spectral curves[14]
    PaviaU dataset. (a) False-color image; (b) ground-type survey map; (c) spectral curves[14]
    OA of Indian Pines dataset with different spatial windows
    OA of different algorithms with different percentages of training samples
    Classification results of different algorithms in Indian Pines dataset. (a) NN; (b) SRC; (c) SVM; (d) WSSD-KNN; (e)SSNN; (f) SSWNN
    OA of PaviaU dataset with different spatial windows
    OA of different algorithms with different percentages of training samples
    Classification results of different algorithms in PaviaU dataset. (a) NN; (b) SRC; (c) SVM; (d) WSSD-KNN; (e) SSNN; (f) SSWNN
    • Table 1. Classification accuracy of different classes in Indian Pines dataset for different algorithms

      View table

      Table 1. Classification accuracy of different classes in Indian Pines dataset for different algorithms

      GradeCategoryTrainingsample setTestsample setClassification accuracy /%
      NNSRCSVMWSSD-KNNSSNNSSWNN
      1Alfalfa103648.2855.5669.4492.1197.22100.00
      2Corn-notill143128558.8655.9872.1389.1394.1798.24
      3Corn-min8374751.4754.0369.2384.1493.8494.55
      4Corn2421344.1541.4057.6182.7688.0099.00
      5Grass/Pasture4843585.3082.3786.7197.03100.0098.82
      6Grass/Tress7365784.3079.9290.6198.3193.9496.98
      7Grass Pasture mowed101850.0060.6169.2369.2376.6780.77
      8Hay-windrowed4843091.2993.1096.52100.0098.62100.00
      9Oats101016.6714.2938.4662.5065.2263.16
      10Soybean-notill9787559.5558.3973.9987.7695.2795.74
      11Soybean-min246220969.4069.5481.8292.3695.2996.02
      12Soybean-clean5953448.3546.7279.2282.9991.6296.17
      13Wheat2118485.4386.4494.2798.9294.5994.38
      14Woods127113890.5489.0593.8097.8299.1297.09
      15Buildings-Grass-Tree-Drives3934740.9451.4463.9591.8898.1899.37
      16Stone-steel-towers108396.3498.6898.6598.8093.2494.74
      OA68.7068.7180.6691.7495.3196.75
      AA63.8064.8477.2389.1192.1994.06
      Kappa0.6430.6420.7800.9060.9470.963
    • Table 2. Classification accuracy of different classes in PaviaU dataset for different algorithms

      View table

      Table 2. Classification accuracy of different classes in PaviaU dataset for different algorithms

      GradeCategoryTrainingsample setTestsample setClassification accuracy /%
      NNSRCSVMWSSD-KNNSSNNSSWNN
      1Asphalt398623391.6193.1393.0997.91100.0099.64
      2Meadows11191753087.7987.0993.2397.7399.9099.49
      3Gravel126197365.9865.7484.4696.5161.7697.11
      4Trees184288094.3494.9795.3599.5798.7797.82
      5Sheets81126499.4299.7599.2699.5999.9196.52
      6Soil302472771.8271.9387.6596.4799.7899.49
      7Bitumen80125069.0868.0487.5791.4677.6898.18
      8Bricks221346165.2266.9579.1993.6896.0893.59
      9Shadows5789099.7599.8899.4099.6596.1396.34
      OA83.8383.9191.2497.2195.5798.54
      AA82.7883.0591.0296.9592.2297.57
      Kappa0.7830.7840.8830.9630.9410.981
    Tools

    Get Citation

    Copy Citation Text

    Lei Ji, Xin Zhang, Limei Zhang, Zhang Wen. Hyperspectral Image Classification Algorithm Based on Space-Spectral Weighted Nearest Neighbor[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 23, 2019

    Accepted: Sep. 15, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Xin Zhang (xzhang1@gzu.edu.cn)

    DOI:10.3788/LOP57.061013

    Topics