Acta Photonica Sinica, Volume. 54, Issue 2, 0219001(2025)
Optical Kerr Nonlinearity in Hybrid Nanomechanical Resonators System
[1] EOM K, PARK H S, YOON D S et al. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles[J]. Physics Reports, 503, 115-163(2011).
[2] XU B, ZHANG P, ZHU J et al. Nanomechanical resonators: toward atomic scale[J]. Acs Nano, 16, 15545-15585(2022).
[3] ZHANG Y, LONČAR M. Ultra-high quality factor optical resonators based on semiconductor nanowires[J]. Optics Express, 16, 17400-17409(2008).
[4] EICHLER A, DEL ÁLAMO RUIZ M, PLAZA J et al. Strong coupling between mechanical modes in a nanotube resonator[J]. Physical Review Letters, 109, 025503(2012).
[5] CHANG Y J, GRAY J M, IMTIAZ A et al. Micromachined resonators of high Q-factor based on atomic layer deposited alumina[J]. Sensors and Actuators A: Physical, 154, 229-237(2009).
[6] MAKAROV D N. Optical-mechanical cooling of a charged resonator[J]. Physical Review A, 99, 033850(2019).
[7] HOPKINS A, JACOBS K, HABIB S et al. Feedback cooling of a nanomechanical resonator[J]. Physical Review B, 68, 235328(2003).
[8] ZHU J P, LI G X. Ground-state cooling of a nanomechanical resonator with a triple quantum dot via quantum interference[J]. Physical Review A, 86, 053828(2012).
[9] CHEN Huajun, MI Xianwu. Phase modulation optomechanical dynamics induced by radiation-pressure in nonlinear optical cavity[J]. Acta Photonica Sinica, 40, 1474-1483(2011).
[10] YANG Jianyong, CHEN Huajun. All-optical mass sensing based on ultra-strong couplingquantum dot-nanomechanical resonator system[J]. Acta Physica Sinica, 68, 246302(2019).
[11] WANG Q, ARASH B. A review on applications of carbon nanotubes and graphenes as nano-resonator sensors[J]. Computational Materials Science, 82, 350-360(2014).
[12] RAJASEKAR R, ROBINSON S. Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator[J]. Plasmonics, 14, 3-15(2019).
[13] LIU Jianfei, HU Zhigang, GAO Yimeng et al. Optical microcavity magnetic sensors (invited)[J]. Acta Photonica Sinica, 53, 0553108(2024).
[14] PECHAL M, ARRANGOIZ ARRIOLA P, SAFAVI NAEINI A H. Superconducting circuit quantum computing with nanomechanical resonators as storage[J]. Quantum Science and Technology, 4, 015006(2018).
[15] XIE Baohao, CHEN Huajun, SUN Yi. Slow light effect caused by optomechanically inducedtransparency in multimode optomechanical system[J]. Acta Physica Sinica, 72, 71-80(2023).
[16] YUPAPIN P P, PORNSUWANCHAROEN N. Proposed nonlinear microring resonator arrangement for stopping and storing light[J]. IEEE Photonics Technology Letters, 21, 404-406(2009).
[17] TAVERNARAKIS A, STAVRINADIS A, NOWAK A et al. Optomechanics with a hybrid carbon nanotube resonator[J]. Nature Communications, 9, 662(2018).
[18] MEKONNEN H D, TESFAHANNES T G, DARGE T Y et al. Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and Coulomb-type interaction[J]. Scientific Reports, 13, 13800(2023).
[19] OCHS J S, SEITNER M, DYKMAN M I et al. Amplification and spectral evidence of squeezing in the response of a strongly driven nanoresonator to a probe field[J]. Physical Review A, 103, 013506(2021).
[20] ROUXINOL F, HAO Y, BRITO F et al. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system[J]. Nanotechnology, 27, 364003(2016).
[21] RAHAFROOZ A, POURKAMALI S. High-frequency thermally actuated electromechanical resonators with piezoresistive readout[J]. IEEE Transactions on Electron Devices, 58, 1205-1214(2011).
[22] KUMAR S, ALAM T, HAQUE A. Thermo-mechanical coupling and size effects in micro and nano resonators[J]. Micro and Nano Systems Letters, 1, 1-9(2013).
[23] STACHIV I, GAN L. Hybrid shape memory alloy-based nanomechanical resonators for ultrathin film elastic properties determination and heavy mass spectrometry[J]. Materials, 12, 3593(2019).
[24] GIL SANTOS E, BAKER C, NGUYEN D et al. High-frequency nano-optomechanical disk resonators in liquids[J]. Nature Nanotechnology, 10, 810-816(2015).
[25] WANG X, MIRANOWICZ A, LI H R et al. Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit[J]. Physical Review A, 93, 063861(2016).
[26] DEHGHANI A, MOJAVERI B, ARYAIE M. Entanglement dynamics of a nano-mechanical resonator coupled to a central qubit[J]. Quantum Information Processing, 21, 45(2022).
[27] LI P B, LIU Y C, GAO S Y et al. Hybrid Quantum Device Based on N V Centers in diamond nanomechanical resonators plus superconducting waveguide cavities[J]. Physical Review Applied, 4, 044003(2015).
[28] EISENACH E, BARRY J, PHAM L et al. Broadband loop gap resonator for nitrogen vacancy centers in diamond[J]. Review of Scientific Instruments, 89, 094705(2018).
[29] WANG S, ZHAO T, YU S et al. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system[J]. IEEE Access, 8, 40599-40611(2020).
[30] LAO C, LIANG Y, WANG X et al. Dynamically tunable resonant strength in electromagnetically induced transparency (eit) analogue by hybrid metal-graphene metamaterials[J]. Nanomaterials, 9, 171(2019).
[31] LIU Yunhe, CHEN Huajun J. Inverse Electromagnetically Induced Transparency in Multimode Cavity Optomechanical Systems[J]. Acta Optica Sinica, 43, 274-281(2023).
[32] ULLAH K, JING H, SAIF F. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics[J]. Physical Review A, 97, 033812(2018).
[33] LOVERA A, GALLINET B, NORDLANDER P et al. Mechanisms of Fano resonances in coupled plasmonic systems[J]. ACS Nano, 7, 4527-4536(2013).
[34] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 82, 2257(2010).
[35] CHEN H J, XIE B H. Room temperature nonlinear optical mass sensing based on a hybrid nanoresonator system[J]. Modern Physics Letters B, 37, 2350179(2023).
[36] YU C, BOCHINSKI J, KORDICH T et al. Driving the driven atom: Spectral signatures[J]. Physical Review A, 56, R4381(1997).
[37] BACHTOLD A, MOSER J, DYKMAN M. Mesoscopic physics of nanomechanical systems[J]. Reviews of Modern Physics, 94, 045005(2022).
[38] HAJJAJ A, JABER N, ILYAS S et al. Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances[J]. International Journal of Non-Linear Mechanics, 119, 103328(2020).
[39] YUAN X Z, GOAN H S, LIN C H et al. Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system[J]. New Journal of Physics, 10, 095016(2008).
[40] LI J J, ZHU K D. Nanoscale solid-state single photon router[J]. Photonics and Nanostructures-Fundamentals and Applications, 10, 553-559(2012).
[41] LI J B, LIANG S, XIAO S et al. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator[J]. Optics Express, 24, 2360-2369(2016).
[42] ULLAH K. Electro-optomechanical switch via tunable bistability and four-wave mixing[J]. Chinese Physics B, 28, 114209(2019).
[43] CHEN H J. The fast-slow light transitions induced by Fano resonance in multiple nanomechanical resonators[J]. Optics & Laser Technology, 161, 109242(2023).
[44] CHEN H J. Two-color electromagnetically induced transparency generated slow light in double-mechanical-mode coupling carbon nanotube resonators[J]. iScience, 27, 109328(2024).
[45] BECHER C, KIRAZ A, MICHLER P et al. Nonclassical radiation from a single self-assembled InAs quantum dot[J]. Physical Review B, 63, 121312(2001).
[46] ZRENNER A, BEHAM E, STUFLER S et al. Coherent properties of a two-level system based on a quantum-dot photodiode[J]. Nature, 418, 612-614(2002).
[47] XU X, SUN B, BERMAN P R et al. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 317, 929-932(2007).
[48] KHAN U, AMIN B, ULLAH K et al. Control of light in a quantized four level graphene atomic system via self and cross-Kerr nonlinearity[J]. Physics Letters A, 383, 125998(2019).
[49] PROVENZANO P P, ELICEIRI K W, YAN L et al. Nonlinear optical imaging of cellular processes in breast cancer[J]. Microscopy and Microanalysis, 14, 532-548(2008).
[50] WILSON RAE I, ZOLLER P, IMAMOḠLU A. Laser cooling of a nanomechanical resonator mode to its quantum ground state[J]. Physical Review Letters, 92, 075507(2004).
[51] WANG Q, ZHANG J Q, MA P C et al. Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field[J]. Physical Review A, 91, 063827(2015).
[52] CHEN Huajun J. Nonlinear optical effect and nonlinear optical mass sensorbased on graphene optomechanical system[J]. Acta Physica Sinica, 69, 187-194(2020).
[53] YANG J Y, CHEN H J. Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system[J]. Chinese Physics B, 29, 107801(2020).
[54] LI J J, ZHU K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 525, 223-254(2013).
[55] CHEN H J. Controllable fast and slow light in the hybrid quantum dot-nanomechanical resonator system mediated by another nanomechanical resonator with Coulomb interaction[J]. Journal of Applied Physics, 130, 204302(2021).
[56] XU X, SUN B, KIM E D et al. Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect[J]. Physical Review Letters, 101, 227401(2008).
[57] FANG K, MATHENY M H, LUAN X et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits[J]. Nature Photonics, 10, 489-496(2016).
[58] HENSINGER W, UTAMI D W, GOAN H S et al. Ion trap transducers for quantum electromechanical oscillators[J]. Physical Review A—Atomic, 72, 041405(2005).
Get Citation
Copy Citation Text
Yi SUN, Huajun CHEN. Optical Kerr Nonlinearity in Hybrid Nanomechanical Resonators System[J]. Acta Photonica Sinica, 2025, 54(2): 0219001
Category:
Received: Jul. 31, 2024
Accepted: Sep. 24, 2024
Published Online: Mar. 25, 2025
The Author Email: Huajun CHEN (chenphysics@126.com)