Chinese Journal of Ship Research, Volume. 20, Issue 4, 213(2025)

Deep residual shrinkage adaptive network-based cloud-edge-end collaborative fault diagnosis method for propulsion shafting system

Kaiwei YU1, Zirui LI2, Chong CHEN3, Jun WU1, and Haiping ZHU2
Author Affiliations
  • 1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3China Ship Development and Design Center, Wuhan 430064, China
  • show less
    Figures & Tables(10)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Description of dataset

      View table
      View in Article

      Table 1. Description of dataset

      工况号转速/(r∙min−1)故障类型样本数
      1200正常/不对中/不平衡100/100/100
      2250正常/不对中/不平衡100/100/100
      3300正常/不对中/不平衡100/100/100
      4350正常/不对中/不平衡100/100/100
      5400正常/不对中/不平衡100/100/100
    • Table 2. Setting the training parameter of RSN model

      View table
      View in Article

      Table 2. Setting the training parameter of RSN model

      参数数值
      学习率0.001
      训练批次5
      迭代次数50
      损失函数交叉熵损失
      优化器Adam
    • Table 3. Average accuracy of ten diagnostic tests for unupdated and updated cloud and edge models

      View table
      View in Article

      Table 3. Average accuracy of ten diagnostic tests for unupdated and updated cloud and edge models

      模型测试准确率
      工况1工况2工况3工况4工况5
      初始未更新模型0.931 1 ± 0.028 10.822 2 ± 0.011 30.926 7 ± 0.012 50.866 7 ± 0.016 30.844 4 ± 0.020 6
      更新后云端模型0.957 0 ± 0.020 60.962 0 ± 0.027 30.971 5 ± 0.012 80.931 5 ± 0.009 10.896 3 ± 0.023 1
      更新后边缘模型0.957 0 ± 0.020 60.962 0 ± 0.027 30.971 5 ± 0.012 80.931 5 ± 0.009 10.896 3 ± 0.023 1
    • Table 4. Parameter settings of online updating model

      View table
      View in Article

      Table 4. Parameter settings of online updating model

      参数数值
      模型与环境每次交互样本数5
      每次更新交互次数8
      目标网络更新学习率0.001
      迭代更新次数50
      异步更新间隔10
    Tools

    Get Citation

    Copy Citation Text

    Kaiwei YU, Zirui LI, Chong CHEN, Jun WU, Haiping ZHU. Deep residual shrinkage adaptive network-based cloud-edge-end collaborative fault diagnosis method for propulsion shafting system[J]. Chinese Journal of Ship Research, 2025, 20(4): 213

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: Feb. 4, 2024

    Accepted: --

    Published Online: Sep. 11, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03779

    Topics