Laser & Optoelectronics Progress, Volume. 55, Issue 12, 121009(2018)

Traffic Sign Recognition Based on Improved Deep Convolution Neural Network

Yongjie Ma*, Xueyan Li, and Xiaofeng Song
Author Affiliations
  • College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
  • show less
    Figures & Tables(14)
    Maximum pooling schematic
    Basic structure of AlexNet network
    Neural network contrast diagrams. Three-level neural network with (a) unused and (b) used dropout
    Structure diagram of improved AlexNet model
    Experimental flow chart
    Visualization of the coiling layer operation
    Contrast diagrams of (a) Accuracy and (b) loss
    • Table 1. Model setting of improved AlexNet network

      View table

      Table 1. Model setting of improved AlexNet network

      LayerLayerinputConvolution kernelConvolutionoutputPoolingPooledoutputLayeroutput
      SizeNumberStepPadSizeMode
      L1(conv1+pool1)48×48×33×3841148×48×842×2Max24×24×8424×24×84
      L2(conv2+pool2)24×24×843×31251124×24×1252×2Max12×12×12512×12×125
      L3(conv3)12×12×1253×32501010×10×25010×10×250
      L4(conv4)10×10×2503×35001110×10×50010×10×500
      L5(conv5+pool5)10×10×5003×3250108×8×2502×2Max4×4×2504×4×250
      L6(conv6)4×4×2503×3250102×2×2502×2×250
      L7(conv7)2×2×2502×2500101×1×5001×1×500
      L8(Full)1×1×5001000
      L9(Full)10001000
      L10(Softmax)100044
    • Table 2. Impact of dropout on the model

      View table

      Table 2. Impact of dropout on the model

      ModelAlexNet modelImproved model without dropoutImproved model with dropout
      Test sample error number19617358
      Test error rate0.0400.0350.012
    • Table 3. Algorithm classification ability analysis

      View table

      Table 3. Algorithm classification ability analysis

      AlgorithmTrainingtime /hParameter consumptionmemory /MBIdentifying eachimage time /msRecognitionaccuracy /%
      AlexNet model173228.215895.568
      Improved model16214096.875
    • Table 4. Algorithm comparison and analysis

      View table

      Table 4. Algorithm comparison and analysis

      AlgorithmTraining time /hParameter consumption memory /MBRecognition accuracy /%
      Improved model162196.875
      Contrast model 22121.7
      Contrast model 121.293.750
    • Table 5. Comparison of different methods in GTSRB dataset recognition results

      View table

      Table 5. Comparison of different methods in GTSRB dataset recognition results

      AlgorithmClassification time /msAccuracy rate /%
      HOG+SVM algorithm of Ref. [17]17695.68
      ANN89.63
      Random forests96.14
      Improved model algorithm4096.875
      Algorithm of Ref. [1]27599.01
      Algorithm of Ref. [6]15298.57
    • Table 6. Identification of AlexNet model under real environmental conditions

      View table

      Table 6. Identification of AlexNet model under real environmental conditions

      TypeTest sample numberCorrect recognition number ofAlexNet modelRecognition accuracyrate of AlexNet model /%
      Motion blur302273.3
      Background interference514384.3
      Light (weather)302583.3
      Shooting angle302686.6
    • Table 7. Identification of improved model under real environmental conditions

      View table

      Table 7. Identification of improved model under real environmental conditions

      TypeTest sample numberCorrect recognition number ofimproved modelRecognition accuracy rate ofimproved model /%
      Motion blur302376.6
      Background interference514588.2
      Light (weather)302790.0
      Shooting angle302893.3
    Tools

    Get Citation

    Copy Citation Text

    Yongjie Ma, Xueyan Li, Xiaofeng Song. Traffic Sign Recognition Based on Improved Deep Convolution Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 25, 2018

    Accepted: Jul. 12, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Yongjie Ma (myjmyj@163.com)

    DOI:10.3788/LOP55.121009

    Topics