Frontiers of Optoelectronics, Volume. 18, Issue 1, 2(2025)
Effect of terahertz radiation on cells and cellular structures
[1] [1] Cherkasova, O.P., Serdyukov, D.S., Atushnyak, A.S., Nemova, E.F., Kozlov, E.N., Shidlovsky, Yu.V., Zaytsev, K.I., Tuchin, V.V.: Mechanisms of the effect of terahertz radiation on cells. Opt. Spect. 128(6), 852–864 (2020)
[2] [2] Romanenko, S., Begley, R., Harvey, A., Hool, L., Wallace, V.: The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J. R. Soc. Interface. 14(137), 20170585(2017)
[3] [3] Rashin, B., Maryam, P., Nariman, N., Abbas, B.: The impact of antimicrobial photodynamic therapy on pain and oral health-related quality of life: a literature review. J. Dent. Sci. 19, 1924(2024)
[4] [4] Sun, L., Li, Y., Yu, Y., Wang, P., Zhu, S., Wu, K., Liu, Y., Wang, R., Min, L., Chang, C.: Inhibition of cancer cell migration and glycolysis by terahertz wave modulation via altered chromatin accessibility. Research 1(16), 9860679 (2022)
[5] [5] Database of biomedical publications. Available at the website of: pubmed.ncbi.nlm.nih.gov/?term=THz;timeline=expanded
[6] [6] Vieira, W.F., Coelho, D.R.A., Gersten, M., Puerto, A.M.H., Kalli, S., Gonzalez-Garibay, G., McEachern, K., Clancy, J.A., Skotko, B.G., Abbeduto, L., Thurman, A.J., Pulsifer, M.B., Corcoran, E., Saltmarche, A.E., Naeser, M.A., Cassano, P.: TransPhoM-DS study grant report: rationale and protocol for investigating the efficacy of low-power transcranial photobiomodulation on language, executive function, attention, and memory in down syndrome. Photonics 11(7), 670 (2024)
[7] [7] Gao, F., Lu, X., Zhang, Q., Shang, S.: Effect of 0.1 THz irradiation on the lifespan and physiological indicators of caenorhabditis elegans. IEEE Trans. Plasma Sci., 1–6(2024)
[8] [8] Penkov, N.V.: Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys. Rev.15(5), 833–849 (2023)
[9] [9] Chen, X., Lindley-Hatcher, H., Stantchev, R.I., Wang, J., Li, K., Serrano, A.H., Taylor, Z.D., Castro-Camus, E., Pickwell-MacPherson, E.: Terahertz (THz) biophotonics technology: instrumentation, techniques, and biomedical applications. Chem. Phys. Rev. 3(1), 011311 (2022)
[10] [10] Weisenstein, C., Wigger, A.K., Richter, M., Sczech, R., Bosserhoff, A.K., Bolvar, P.H.: THz detection of biomolecules in aqueous environments—status and perspectives for analysis under physiological conditions and clinical use. Int. J. Infrared Millim. Terahertz Waves 42(6), 607–646 (2021)
[11] [11] Reimers, J.R., McKemmish, L.K., McKenzie, R.H., Mark, A.E., Hush, N.S.: Weak, strong, and coherent regimes of Frhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. U.S.A.106(11), 4219–4224 (2009)
[12] [12] Sitnikov, D.S., Ilina, I.V., Pronkin, A.A.: Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm. Opt. Eng. 59(6), 061613(2020)
[13] [13] Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., Bannikova, S.V., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., Peltek, S.E.: Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells. Bioelectromagnetics 34(1), 15–21 (2013)
[14] [14] Demidova, E.V., Goryachkovskaya, T.N., Mescheryakova, I.A., Malup, T.K., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., Peltek, S.E.: Impact of terahertz radiation on stresssensitive genes of E. coli cell. IEEE Trans. Terahertz Sci. Technol. 6(3), 1–7 (2016)
[15] [15] Serdyukov, D.S., Goryachkovskaya, T.N., Mescheryakova, I.A., Bannikova, S.V., Kuznetsov, S.A., Cherkasova, O.P., Popik, V.M., Peltek, S.E.: Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. Biomed. Opt. Express 11(9), 5258 (2020)
[16] [16] Serdyukov, D.S., Goryachkovskaya, T.N., Mescheryakova, I.A., Kuznetsov, S.A., Popik, V.M., Peltek, S.E.: Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. Biomed. Opt. Express 12(2), 705–721 (2021)
[17] [17] Weightman, P.: Prospects for the study of biological systems with high power sources of terahertz radiation. Phys. Biol. 9(5),053001 (2012)
[18] [18] Schroer, M.A., Schewa, S., Gruzinov, A.Y., Rnnau, C., Lahey-Rudolph, J.M., Blanchet, C.E., Zickmantel, T., Song, Y.H., Svergun, D.I., Roessle, M.: Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci. Rep. 11(1), 22311 (2021)
[19] [19] Gezimati, M., Singh, G.: Terahertz imaging technology for localization of cancer tumours: a technical review. Multimedia Tools Appl. 83(11), 33675–33711 (2023)
[20] [20] Kucheryavenko, A.S., Chernomyrdin, N.V., Gavdush, A.A., Alekseeva, A.I., Nikitin, P.V., Dolganova, I.N., Karalkin, P.A., Khalansky, A.S., Spektor, I.E., Skorobogatiy, M., Tuchin, V.V., Zaytsev, K.I.: Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. Biomed. Opt. Express 12(8), 5272–5289 (2021)
[21] [21] Globus, T., Moskaluk, C., Pramoonjago, P., Gelmont, B., Moyer, A., Bykhovski, A., Ferrance, J.: Sub-terahertz vibrational spectroscopy of ovarian cancer and normal control tissue for molecular diagnostic technology. Cancer Biomark. 24(4), 405–419(2019)
[22] [22] Chernomyrdin, N.V., Il’enkova, D.R., Zhelnov, V.A., Alekseeva, A.I., Gavdush, A.A., Musina, G.R., Nikitin, P.V., Kucheryavenko, A.S., Dolganova, I.N., Spektor, I.E., Tuchin, V.V., Zaytsev, K.I.: Quantitative polarization-sensitive super-resolution solid immersion microscopy reveals biological tissues’ birefringence in the terahertz range. Sci. Rep. 13(1), 16596 (2023)
[23] [23] Kucheryavenko, A.S., Dolganova, I.N., Zhokhov, A.A., Masalov, V.M., Musina, G.R., Tuchin, V.V., Chernomyrdin, N.V., Gavdush, A.A., Il’enkova, D.R., Garnov, S.V., Zaytsev, K.I.: Terahertz-wave scattering in tissues: examining the limits of the applicability of effective-medium theory. Phys. Rev. Appl. 20(5),054050 (2023)
[24] [24] Zhelnov, V.A., Chernomyrdin, N.V., Katyba, G.M., Gavdush, A.A., Bukin, V.V., Garnov, S.V., Spektor, I.E., Kurlov, V.N., Skorobogatiy, M., Zaytsev, K.I.: Hemispherical rutile solid immersion lens for terahertz microscopy with superior 0.06–0.11 resolution. Adv. Opt. Mater. 12(1), 2300927 (2024)
[25] [25] Kucheryavenko, A.S., Zhelnov, V.A., Melikyants, D.G., Chernomyrdin, N.V., Lebedev, S.P., Bukin, V.V., Garnov, S.V., Kurlov, V.N., Zaytsev, K.I., Katyba, G.M.: Super-resolution THz endoscope based on a hollow-core sapphire waveguide and a solid immersion lens. Opt. Express 31(8), 13366–13373 (2023)
[26] [26] Martins, I.S., Silva, H.F., Lazareva, E.N., Chernomyrdin, N.V., Zaytsev, K.I., Oliveira, L.M., Tuchin, V.V.: Measurement of tissue optical properties in a wide spectral range: a review. Biomed. Opt. Express 14, 249–298 (2023)
[27] [27] Yamazaki, S., Harata, M., Idehara, T., Konagaya, K., Yokoyama, G., Hoshina, H., Ogawa, Y.: Actin polymerization is activated by terahertz irradiation. Sci. Rep. 8(1), 9990 (2018)
[28] [28] Yamazaki, S., Harata, M., Ueno, Y., Tsubouchi, M., Konagaya, K., Ogawa, Y., Isoyama, G., Otani, C., Hoshina, H.: Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells. Sci. Rep. 10(1), 9008 (2020)
[29] [29] Tuchin, V.V., Zhu, D., Genina, E.A. (eds.): Handbook of tissue optical clearing: new prospects in optical imaging. Taylor Francis Group LLC, CRC Press, Boca Raton (2022)
[30] [30] Shchepetilnikov, A.V., Zarezin, A.M., Muravev, V.M., Gusikhin, P.A., Kukushkin, I.V.: Quantitative analysis of water content and distribution in plants using terahertz imaging. Opt. Eng. 59(6),061617 (2020)
[31] [31] Smolyanskaya, O.A., Chernomyrdin, N.V., Konovko, A.A., Zaytsev, K.I., Ozheredov, I.A., Cherkasova, O.P., Nazarov, M.M., Guillet, J.P., Kozlov, S.A., Kistenev, Yu.V., Coutaz, J.L., Mounaix, P., Vaks, V.L., Son, J.H., Cheon, H., Wallace, V.P., Feldman, Yu., Popov, I., Yaroslavsky, A.N., Shkurinov, A.P., Tuchin, V.V.: Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progr. Quant. Electron. 62, 1–77 (2018)
[32] [32] Ramundo, O.A., Gallerano, G.P.: Terahertz radiation effects and biological applications. J. Infrared Millim. Terahertz Waves 30,1308–1318 (2009)
[33] [33] Shiraga, K., Suzuki, T., Kondo, N., Tanaka, K., Ogawa, Y.: Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl. Phys. Lett. 106(25), 253701 (2015)
[34] [34] Sun, L., Zhao, L., Peng, R.Y.: Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 8(1), 28(2021)
[35] [35] Comez, L., Paolantoni, M., Sassi, P., Corezzi, S., Morresi, A., Fioretto, D.: Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. Soft Matter 12(25), 5501–5514 (2016)
[36] [36] Yamaguchi, S., Fukushi, Y., Kubota, O., Itsuji, T., Ouchi, T., Yamamoto, S.: Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci. Rep. 6(1), 1–6 (2016)
[37] [37] Laage, D., Elsaesser, T., Hynes, J.T.: Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117(16), 10694–10725 (2017)
[38] [38] Zhu, Z., Chang, C., Shu, Y., Song, B.: Transition to a superpermeation phase of confined water induced by a terahertz electromagnetic wave. J. Phys. Chem. Lett. 11(1), 256–262(2020)
[39] [39] Hu, E., Zhang, Q., Shang, S., Jiang, Y., Lu, X.: Continuous wave irradiation at 01 terahertz facilitates transmembrane transport of small molecules. iScience 25(3), 103966 (2022)
[40] [40] Lin, Y., Wu, X., Wang, K., Shang, S., Gong, Y., Zhao, H., Wu, D., Zhang, P., Lu, X.: Spectral characteristics and functional responses of phospholipid bilayers in the terahertz band. Int. J. Mol. Sci. 24(8), 7111 (2023)
[41] [41] Bannikova, S., Khlebodarova, T., Vasilieva, A., Mescheryakova, I., Bryanskaya, A., Shedko, E., Popik, V., Goryachkovskaya, T., Peltek, S.: Specific features of the proteomic response of thermophilic bacterium geobacillus icigianus to terahertz irradiation. Int. J. Mol. Sci. 23(23), 15216 (2022)
[42] [42] Sugiyama, J., Tokunaga, Y., Hishida, M., Tanaka, M., Takeuchi, K., Satoh, D., Imashimizu, M.: Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat. Com. 14(1),2825 (2023)
[43] [43] Masahiko, H., Yuya, U., Shota, Y.: Nonthermal effect of terahertz wave radiation on DNA damage repair in living cells. Preprint (Version 1). Available at Research Square (2023)
[44] [44] Cheon, H., Paik, J.H., Choi, M., Yang, H.J., Son, J.H.: Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep. 9(1), 6413 (2019)
[45] [45] Cheon, H., Hur, J.K., Hwang, W., Yang, H.J., Son, J.H.: Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep. 13(1), 4930 (2023)
[46] [46] Tachizaki, T., Sakaguchi, R., Terada, S., Kamei, K.I., Hirori, H.: Terahertz pulse-altered gene networks in human induced pluripotent stem cells. Opt. Lett. 45(21), 6078–6081 (2020)
[47] [47] Wang, L., Cheng, Y., Wang, W., Zhao, J., Wang, Y., Zhang, X., Wang, M., Shan, T., He, M.: Effects of terahertz radiation on the aggregation of Alzheimer’s A42 peptide. Int. J. Mol. Sci. 24(5),5039 (2023)
[48] [48] Lee, D., Cheon, H., Jeong, S.Y., Son, J.H.: Transformation of terahertz vibrational modes of cytosine under hydration. Sci. Rep. 10(1), 10271 (2020)
[49] [49] Tan, S., Tan, P., Luo, L., Chi, Y., Yang, Z., Zhao, X., Zhao, L., Dong, J., Zhang, J., Yao, B.: Exposure effects of terahertz waves on primary neurons and neuron-like cells under nonthermal conditions. Biomed. Environ. Sci. 32, 739–754 (2019)
[50] [50] Ma, S., Ding, P., Zhou, Z., Jin, H., Li, X., Li, Y.: Terahertz radiation modulates neuronal morphology and dynamics properties. Brain Sci. 14(3), 279 (2024)
[51] [51] Liu, M., Liu, J., Liang, W., Lu, B., Fan, P., Song, Y., Wang, M., Wu, Y., Cai, X.: Recent advances and research progress on microsystems and bioeffects of terahertz Neuromodulation. Microsyst. Nanoeng. 9(1), 143 (2023)
[52] [52] Zhao, X., Zhang, M., Liu, Y., Liu, H., Ren, K., Xue, Q., Zhang, H., Zhi, N., Wang, W., Wu, S.: Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro. iScience 24(12), 103485 (2021)
[53] [53] Samsonov, A., Popov, S.: The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagnetics 34(2),133–144 (2013)
[54] [54] Sulatsky, M., Duka, M., Smolyanskaya, O.: Stimulation of neurite growth under broadband pulsed THz radiation. Phys. Wave Phenom. 22(3), 197–201 (2014)
[55] [55] Duka, M., Dvoretskaya, L., Babelkin, N., Khodzitskii, M., Chivilikhin, S., Smolyanskaya, O.: Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells. Quantum Electron. 44(8),707–712 (2014)
[56] [56] Deghoyan, A., Heqimyan, A., Nikoghosyan, A., Dadasyan, E., Ayrapetyan, S.: Cell bathing medium as a target for non thermal effect of millimeter waves. Electromagn. Biol. Med. 31(2),132–142 (2012)
[57] [57] Ol’shevskaia, I.S., Kozlov, A., Petrov, A., Zapara, T., Ratushniak, A.: Influence of terahertz (submillimeter) laser radiation on neurons in vitro. Zhurnal Vyss. Nervn. Deyatelnosti Im. I P Pavlov 59, 353–359 (2009)
[58] [58] Tsurkan, M., Smolyanskaya, O., Bespalov, V., Penniyainen, V., Kipenko, A., Lopatina, E., Krylov, B.: Changing growth of neurites of sensory ganglion by terahertz radiation. Proc. SPIE 8261,82610 (2012)
[59] [59] Ma, S., Li, Z., Gong, S., Lu, C., Li, X., Li, Y.: High frequency electromagnetic radiation stimulates neuronal growth and hippocampal synaptic transmission. Brain Sci. 13(4), 686 (2023)
[60] [60] Shaoqing, M., Zhiwei, L., Shixiang, G., Chengbiao, L., Xiaoli, L., Yingwei, L.: The laws and effects of terahertz wave interactions with neurons. Front. Bioeng. Biotechnol. 11, 684 (2023)
[61] [61] Kovalevska, L., Golenkov, O., Kulahina, Y., Callender, T., Sizov, F., Kashuba, E.: A comparative study on the viability of normal and cancerous cells upon irradiation with a steady beam of THz rays. Life (Basel) 12(3), 376 (2022)
[62] [62] Sitnikov, D.S., Revkova, V.A., Ilina, I.V., Gurova, S.A., Komarov, P.S., Struleva, E.V., Konoplyannikov, M.A., Kalsin, V.A., Baklaushev, V.P.: Studying the genotoxic effects of high intensity terahertz radiation on fibroblasts and CNS tumor cells. J. Biophotonics 16(1), e202200212 (2023)
[63] [63] Titushkin, I., Rao, V., Pickard, W., Moros, E., Shafirstein, G., Cho, M.: Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation. Radiat. Res.172(6), 725–736 (2009)
[64] [64] Yamazaki, S., Ueno, Y., Hosoki, R., Saito, T., Idehara, T., Yamaguchi, Y., Otani, C., Ogawa, Y., Harata, M., Hoshina, H.: THz irradiation inhibits cell division by affecting actin dynamics.PLoS ONE 16(8), e0248381 (2021)
[65] [65] Borovkova, M., Serebriakova, M., Fedorov, V., Sedykh, E., Vaks, V., Lichutin, A., Salnikova, A., Khodzitsky, M.: Investigation of terahertz radiation influence on rat glial cells. Biomed. Opt. Express 8(1), 273–280 (2017)
[66] [66] Perera, P.G.T., Appadoo, D.R.T., Cheeseman, S., Wandiyanto, J.V., Linklater, D., Dekiwadia, C., Truong, V.K., Tobin, M.J., Vongsvivut, J., Bazaka, O., Bazaka, K., Croft, R.J., Crawford, R.J., Ivanova, E.P.: PC 12 pheochromocytoma cell response to super high frequency terahertz radiation from synchrotron source. Cancers (Basel) 11(2), 162 (2019)
[67] [67] Sitnikov, D., Revkova, V., Ilina, I., Shatalova, R., Komarov, P., Struleva, E., Konoplyannikov, M., Kalsin, V., Baklaushev, V.: Sensitivity of neuroblastoma and induced neural progenitor cells to high-intensity THz radiation. Int. J. Mol. Sci. 24(7), 6558(2023)
[68] [68] Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)
[69] [69] Nourinovin, S., Rahman, M.M., Park, S.J., Hamid, H., Philpott, M.P., Alomainy, A.: Terahertz dielectric characterization of three-dimensional organotypic treated basal cell carcinoma and corresponding double Debye model. IEEE Trans. Terahertz Sci. Technol. 13(3), 246–253 (2023)
[70] [70] Wallace, V.P., Fitzgerald, A.J., Pickwell, E., Pye, R.J., Taday, P.F., Flanagan, N., Ha, T.: Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60(10), 1127–1133(2006)
[71] [71] Shi, W., Wang, Y., Hou, L., Ma, C., Yang, L., Dong, C., Wang, Z., Wang, H., Guo, J., Xu, S., Li, J.: Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 14(1), e202000237 (2021)
[72] [72] Chen, H., Han, J., Wang, D., Zhang, Y., Li, X., Chen, X.: In vivo estimation of breast cancer tissue volume in subcutaneous xenotransplantation mouse models by using a high-sensitivity fiber-based terahertz scanning imaging system. Front. Genet. 12, 700086 (2021)
[73] [73] Sun, Z., Wu, X., Tao, R., Zhang, T., Liu, X., Wang, J., Wan, H., Zheng, S., Zhao, X., Zhang, Z., Yang, P.: Prediction of IDH mutation status of glioma based on terahertz spectral data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629(2023)
[74] [74] Cherkasova, O.P., Konnikova, M.R., Nazarov, M.M., Vrazhnov, D.A., Kistenev, Yu.V., Shkurinov, A.P.: Terahertz spectroscopy of mouse blood serum in the dynamics of experimental glioblastoma. J. Biomed. Photonics. Engineering. 9(3), 030308 (2023)
[75] [75] Yang, X., Shi, J., Wang, Y., Yang, K., Zhao, X., Wang, G., Xu, D., Wang, Y., Yao, J., Fu, W.: Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging. J. Biophotonics 11(8), e201700386 (2018)
[76] [76] Galindo, C., Latypova, L., Barshtein, G., Livshits, L., Arbell, D., Einav, S., Feldman, Y.: The inhibition of glucose uptake to erythrocytes: microwave dielectric response. Eur. Biophys. J.51(4–5), 353–363 (2022)
[77] [77] Kolesnikov, A.S., Kolesnikova, E.A., Popov, A.P., Nazarov, M.M., Shkurinov, A.P., Tuchin, V.V.: In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron. 44(7), 633–640 (2014)
[78] [78] Chernomyrdin, N.V., Musina, G.R., Nikitin, P.V., Dolganova, I.N., Kucheryavenko, A.S., Alekseeva, A.I., Wang, Y., Xu, D., Shi, Q., Tuchin, V.V., Zaytsev, K.I.: Terahertz technology in intraoperative neurodiagnostics: a review. Opto-Electronic Adv.6(5), 220071 (2023)
[79] [79] Musina, G.R., Dolganova, I.N., Chernomyrdin, N.V., Gavdush, A.A., Ulitko, V.E., Cherkasova, O.P., Tuchina, D.K., Nikitin, P.V., Alekseeva, A.I., Bal, N.V., Komandin, G.A., Kurlov, V.N., Tuchin, V.V., Zaytsev, K.I.: Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. J. Biophotonics 13(12), e202000297 (2020)
[80] [80] Zaytsev, K.I., Dolganova, I.N., Chernomyrdin, N.V., Katyba, G.M., Gavdush, A.A., Cherkasova, O.P., Komandin, G.A., Shchedrina, M.A., Khodan, A.N., Ponomarev, D.S., Reshetov, I.V., Karasik, V.E., Skorobogatiy, M., Kurlov, V.N., Tuchin, V.V.: The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. J. Opt. 22(1), 013001 (2020)
[81] [81] Gavdush, A., Chernomyrdin, N., Komandin, G., Dolganova, I., Nikitin, P., Musina, G., Katyba, G., Kucheryavenko, A., Reshetov, I., Potapov, A., Tuchin, V., Zaytsev, K.: Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: double-Debye and double-overdamped-oscillator models of dielectric response. Biomed. Opt. Express 12(1), 69–83 (2021)
[82] [82] Cherkasova, O.P., Serdyukov, D.S., Nemova, E.F., Ratushnyak, A.S., Kucheryavenko, A.S., Dolganova, I.N., Xu, G., Skorobogatiy, M., Reshetov, I.V., Timashev, P.S., Spektor, I.E., Zaytsev, K.I., Tuchin, V.V.: Cellular effects of terahertz waves. J. Biomed. Opt. 26(9), 090902 (2021)
[83] [83] Zaytsev, K.I., Dolganova, I.N., Chernomyrdin, N.V., Komandin, G.A., Lavrukhin, D.V., Reshetov, I.V., Kurlov, V.N., Ponomarev, D.S., Tuchin, V.V., Spektor, I.E., Karasik, V.E.: Application of terahertz technologies in biophotonics. Part 2: Spectroscopy and visualization of malignant neoplasms. Photonics 13(8), 736–743(2019)
[84] [84] Cong, M., Li, W., Liu, Y., Bi, J., Wang, X., Yang, X., Zhang, Z., Zhang, X., Zhao, Y.N., Zhao, R., Qiu, J.: Biomedical application of terahertz imaging technology: a narrative review. Quant. Imaging Med. Surg. 13(12), 8768–8786 (2023)
[85] [85] Hernandez-Cardoso, G.G., Amador-Medina, L.F., Gutierrez-Torres, G., Reyes-Reyes, E.S., Benavides Martnez, C.A., Cardona Espinoza, C., Arce Cruz, J., Salas-Gutierrez, I., Murillo-Ortz, B.O., Castro-Camus, E.: Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients. Sci. Rep. 12(1), 3110 (2022)
[86] [86] Ushakov, A., Mamaeva, K., Seleznev, L., Rizaev, G., Bukin, V., Dolmatov, T., Chizhov, P., Bagdasarov, V., Garnov, S.: Pulsed THz radiation under ultrafast optical discharge of vacuum photodiode. Front Optoelectron. 17(1), 20 (2024)
[87] [87] Hernandez-Cardoso, G.G., Singh, A.K., Castro-Camus, E.: Empirical comparison between effective medium theory models for the dielectric response of biological tissue at terahertz frequencies. Appl. Opt. 59(13), D6–D11 (2020)
[88] [88] Cheon, H., Yang, H.J., Choi, M., Son, J.H.: Effective demethylation of melanoma cells using terahertz radiation. Biomed. Opt. Express 10(10), 4931–4941 (2019)
[89] [89] Nikitkina, A.I., Bikmulina, P.Y., Gafarova, E.R., Kosheleva, N.V., Efremov, Y.M., Bezrukov, E.A., Butnaru, D.V., Dolganova, I.N., Chernomyrdin, N.V., Cherkasova, O.P., Gavdush, A.A., Timashev, P.S.: Terahertz radiation and the skin: a review. J. Biomed. Opt. 26(4), 043005 (2021)
[90] [90] International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–522 (1998)
[91] [91] Minin, I.V., Minin, O.V.: Problems of metrology of terahertz radiation in medicine. Bull. SGUGiT. 3, 162–180 (2021)
[92] [92] Wenfei, B., Rong, C., Qiang, L., Xiaobo, Z., Yintao, H., Yubin, G.: Investigations on Na+, K+-ATPase energy consumption in ion flow of hydrophilic pores by THz unipolar stimulation. iScience 26(10), 107849 (2023)
[93] [93] Article Electromagnetic safety Material from Wikipedia - the free encyclopedia Electronic resource. Available at the website of: ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%B A%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D 0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%-D0%BD%D0%BE%D1%81%D1%82%D1%8C (Date of the application 11.05.2024)
[94] [94] Qiu, S., Fan, H., He, L.: Single-cell analysis reveals microbial spore responses to microwave radiation. J. Innov. Opt. Health Sci.16(2), 2244004 (2023)
[95] [95] Peng, W., Wang, P., Tan, C., Zhao, H., Chen, K., Si, H., Tian, Y., Lou, A., Zhu, Z., Yuan, Y., Wu, K., Chang, C., Wu, Y., Chen, T.: High frequency terahertz stimulation alleviates neuropathic pain by inhibiting the pyramidal neuron activity in the anterior cingulate cortex of mice. Elife 13, 97444 (2024)
[96] [96] Pu, Z., Wu, Y., Zhu, Z., Zhao, H., Cui, D.: A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen. Res. 20(2), 309–325 (2025)
[97] [97] Ding, W., Zhao, X., Wang, H., Wang, Y., Liu, Y., Gong, L., Lin, S., Liu, C., Li, Y.: Effect of terahertz electromagnetic field on the permeability of potassium channel Kv12. Int. J. Mol. Sci. 24(12),10271 (2023)
[98] [98] Guo, L., Bo, W., Wang, K., Wang, S., Gong, Y.: Theoretical investigation on the effect of terahertz wave on Ca2+ transport in the calcium channel. iScience 25(1), 103561 (2022)
[99] [99] Li, Y., Chang, C., Zhu, Z., Sun, L., Fan, C.: Terahertz wave enhances permeability of the voltage-gated calcium channel. J. Am. Chem. Soc. 143(11), 4311–4318 (2021)
[100] [100] Bolvar, P.H., Nagel, M., Richter, F., Brucherseifer, M., Bttner, R.: Label-free THz sensing of genetic sequences: towards “THz biochips.” Philos. Trans. Ser. A Math. Eng. Sci. 362, 323–333(2004)
[101] [101] Globus, T., Sizov, I., Gelmont, B.: Teraherz vibrational spectroscopy of E. coli and molecular constituents: computational modeling and experiment. J. Phys. D Appl. Phys. 36(11), 1314–1322(2013)
[102] [102] Bogomazova, A., Vassina, E., Goryachkovskaya, T., Popik, V., Sokolov, A., Kolchanov, N., Lagarkova, M., Kiselev, S., Peltek, S.: No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci. Rep. 5, 7749 (2015)
[103] [103] Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.: DNA breathing dynamics in the presence of a terahertz field. Phys. Lett. A 374(10), 1214–1217 (2010)
[104] [104] Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K.., Bishop, A.R., Rosen, E.D., Martinez, J.S., Chen, H.T., Rodriguez, G., Alexandrov, B.S., Usheva, A.: Mammalian stem cells reprogramming in response to terahertz radiation. PLoS ONE 5(12), e15806 (2010)
[105] [105] Mingaleev, S.F., Gaididei, Y.B., Christiansen, P.L., Kivshar, Y.S.: Nonlinearity-induced conformational instability and dynamics of biopolymers. Europhys. Lett. 59(3), 403–409 (2002)
[106] [106] Lundholm, I.V., Rodilla, H., Wahlgren, W.Y., Duelli, A., Bourenkov, G., Vukusic, J., Friedman, R., Stake, J., Schneider, T., Katona, G.: Terahertz radiation induces non-thermal structural changes associated with Frhlich condensation in a protein crystal. Struct Dyn. 2(5), 054702 (2015)
[107] [107] Cancer. World Health Organization. Available at the website of: who.int/health-topics/cancer#tab=tab_2
[108] [108] Sitnikov, D.S., Ilina, I.V., Revkova, V.A., Rodionov, S.A., Gurova, S.A., Shatalova, R.O., Kovalev, A.V., Ovchinnikov, A.V., Chefonov, O.V., Konoplyannikov, M.A., Kalsin, V.A., Baklaushev, V.P.: Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed. Opt. Express 12(11), 7122–7138 (2021)
[109] [109] Musina, G.R., Nikitin, P.V., Chernomyrdin, N.V., Dolganova, I.N., Gavdush, A.A., Komandin, G.A., Ponomarev, D.S., Potapov, A.A., Reshetov, I.V., Tuchin, V.V., Zaytsev, K.I.: Prospects of terahertz technology in diagnosis of human brain tumors: a review. J. Biomed. Photonics Eng. 6(2), 020201 (2020)
[110] [110] Amini, T., Jahangiri, F., Ameri, Z., Hemmatian, M.A.: A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12(1), e92 (2021)
[111] [111] Zhou, C., Xiong, L., Zhou, X., Li, L., Yan, Q.: Transcriptome profiling of guinea pig skin exposed to a high-power terahertz source. Environ. Mol. Mutagen. 63(1), 29–36 (2022)
[112] [112] Tang, J., Yin, H., Ma, J., Bo, W., Yang, Y., Xu, J., Liu, Y., Gong, Y.: Terahertz electric field-induced membrane electroporation by molecular dynamics simulations. J. Membr. Biol. 251(5–6),681–693 (2018)
[113] [113] Rothbart, N., Glck, A., Hbers, H.W.: Terahertz gas spectroscopy applied to medicine and metrology. IEEE Trans. Terahertz Sci. Technol. 99, 1–8 (2024)
[114] [114] Cherkasova, O.P., Fedorov, V.I., Nemova, E.F., Pogodin, A.S.: Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin. Opt. Spectrosc. 107(4),534–537 (2009)
Get Citation
Copy Citation Text
Rytik A. P., Tuchin V. V.. Effect of terahertz radiation on cells and cellular structures[J]. Frontiers of Optoelectronics, 2025, 18(1): 2
Category: REVIEW ARTICLE
Received: Feb. 13, 2024
Accepted: Apr. 30, 2025
Published Online: Apr. 30, 2025
The Author Email: