Journal of Synthetic Crystals, Volume. 53, Issue 9, 1475(2024)

Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach

CHU Dongdong, YANG Zhihua*, and PAN Shilie
Author Affiliations
  • [in Chinese]
  • show less
    References(72)

    [2] [2] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984.

    [3] [3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear Optical Borate Crystals[M]. Germany: Wiley, 2012.

    [4] [4] TRAN T T, YU H W, RONDINELLI J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28(15): 5238-5258.

    [5] [5] GAO L, HUANG J B, GUO S R, et al. Structure-property survey and computer-assisted screening of mid-infrared nonlinear optical chalcohalides[J]. Coordination Chemistry Reviews, 2020, 421: 213379.

    [6] [6] HALASYAMANI P S, RONDINELLI J M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals[J]. Nature Communications, 2018, 9: 2972.

    [7] [7] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059.

    [8] [8] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Science in China Series B, 1985, 28(3): 235-243.

    [9] [9] CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616.

    [10] [10] WU Y C, SASAKI T, NAKAI S D, et al. CsB3O5: a new nonlinear optical crystal[J]. Applied Physics Letters, 1993, 62(21): 2614-2615.

    [11] [11] TU J M, KESZLER D A. CsLiB6O10: a noncentrosymmetric polyborate[J]. Materials Research Bulletin, 1995, 30(2): 209-215.

    [12] [12] CHEN C T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932.

    [13] [13] TELL B, KASPER H M. Optical and electrical properties of AgGaS2 and AgGaSe2[J]. Physical Review B, 1971, 4(12): 4455-4459.

    [14] [14] BOYD G D, BUEHLER E, STORZ F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J]. Applied Physics Letters, 1971, 18(7): 301-304.

    [16] [16] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648.

    [17] [17] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154.

    [18] [18] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202.

    [19] [19] LIANG F, KANG L, LIN Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J]. Coordination Chemistry Reviews, 2017, 333: 57-70.

    [20] [20] DONG L F, ZHANG S Z, GONG P F, et al. Evaluation and prospect of mid-infrared nonlinear optical materials in f0 rare earth (RE=Sc, Y, La) chalcogenides[J]. Coordination Chemistry Reviews, 2024, 509: 215805.

    [21] [21] HART G L W, MUELLER T, TOHER C, et al. Machine learning for alloys[J]. Nature Reviews Materials, 2021, 6: 730-755.

    [22] [22] XIE J H, ZHOU Y S, FAIZAN M, et al. Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies[J]. Nature Computational Science, 2024, 4: 322-333.

    [23] [23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12: 191-201.

    [24] [24] GAO C C, MIN X, FANG M H, et al. Innovative materials science via machine learning[J]. Advanced Functional Materials, 2022, 32(1): 2108044.

    [25] [25] XU X, LIANG H P, HUANG Q S, et al. Computational screening of promising deep-ultraviolet light emitters[J]. Journal of the American Chemical Society, 2024, 146(18): 12864-12876.

    [26] [26] HAN S R, YE L T, LI Y, et al. Theoretical understanding of nonlinear optical properties in solids: a perspective[J]. The Journal of Physical Chemistry Letters, 2024, 15(12): 3323-3335.

    [27] [27] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348.

    [28] [28] OGANOV A R, LYAKHOV A O, VALLE M. How evolutionary crystal structure prediction works: and why[J]. Accounts of Chemical Research, 2011, 44(3): 227-237.

    [29] [29] O’SHAUGHNESSY M, GLOVER J, HAFIZI R, et al. Porous isoreticular non-metal organic frameworks[J]. Nature, 2024, 630: 102-108.

    [30] [30] HU Y J, HU X B, ZHANG L, et al. Machine-learning modeling for ultra-stable high-efficiency perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(41): 2201463.

    [31] [31] MOU T Y, PILLAI H S, WANG S W, et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning[J]. Nature Catalysis, 2023, 6: 122-136.

    [32] [32] FAN T, OGANOV A R. Discovery of high performance thermoelectric chalcogenides through first-principles high-throughput screening[J]. Journal of Materials Chemistry C, 2021, 9(38): 13226-13235.

    [33] [33] HE J G, XIA Y, LIN W W, et al. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles[J]. Advanced Functional Materials, 2022, 32(14): 2108532.

    [34] [34] ZHANG M S, LIU B W, JIANG X M, et al. Nonlinear optical phosphide CuInSi2P4: the inaugural member of diamond-like family I-III-IV2-V4 inspired by ZnGeP2[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1107-1113.

    [35] [35] KANG L, LIANG F, JIANG X X, et al. First-principles design and simulations promote the development of nonlinear optical crystals[J]. Accounts of Chemical Research, 2020, 53(1): 209-217.

    [36] [36] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486.

    [37] [37] WU Q C, KANG L, LIN Z S. A machine learning study on high thermal conductivity assisted to discover chalcogenides with balanced infrared nonlinear optical performance[J]. Advanced Materials, 2024, 36(6): 2309675.

    [38] [38] ZHANG B B, ZHANG X D, YU J, et al. First-principles high-throughput screening pipeline for nonlinear optical materials: application to borates[J]. Chemistry of Materials, 2020, 32(15): 6772-6779.

    [39] [39] YU J, ZHANG B B, ZHANG X D, et al. Finding optimal mid-infrared nonlinear optical materials in germanates by first-principles high-throughput screening and experimental verification[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45023-45035.

    [40] [40] DONG X H, HUANG H B, HUANG L, et al. Unearthing superior inorganic UV second-order nonlinear optical materials: a mineral-inspired method integrating first-principles high-throughput screening and crystal engineering[J]. Angewandte Chemie International Edition, 2024, 63(11): e202318976.

    [41] [41] NACCARATO F, RICCI F, SUNTIVICH J, et al. Searching for materials with high refractive index and wide band gap: a first-principles high-throughput study[J]. Physical Review Materials, 2019, 3(4): 044602.

    [42] [42] YIN Y H, WANG A, SUN Z X, et al. Machine learning regression model for predicting the band gap of multi-elements nonlinear optical crystals[J]. Computational Materials Science, 2024, 242: 113109.

    [43] [43] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188.

    [44] [44] YU Z X, XUE P J, XIE B B, et al. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals[J]. Physical Chemistry Chemical Physics, 2024, 26(22): 16378-16387.

    [45] [45] LEI B H, YANG Z H, PAN S L. Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups[J]. Chemical Communications, 2017, 53(19): 2818-2821.

    [46] [46] LEI B H, YANG Z H, YU H W, et al. Module-guided design scheme for deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140(34): 10726-10733.

    [47] [47] LI S F, JIANG X M, FAN Y H, et al. New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold[J]. Chemical Science, 2018, 9(26): 5700-5708.

    [49] [49] WEI L, FU Y B, LI J R, et al. Theoretical study on the intrinsic source of the large thermal conductivity of Li-based chalcogenide nonlinear optical crystals: from AgGaS2 to LiGaS2[J]. Crystal Growth & Design, 2020, 20(6): 4150-4156.

    [50] [50] WEI L, LV X S, YANG Y G, et al. Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn)[J]. Inorganic Chemistry, 2019, 58(7): 4320-4327.

    [51] [51] HOU D W, NISSIMAGOUDAR A S, BIAN Q, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98.

    [52] [52] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335.

    [53] [53] MORELLI D T, SLACK G A. High lattice thermal conductivity solids[M]. New York: Springer, 2006.

    [54] [54] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, Condensed Matter, 1995, 52(20): 14636-14645.

    [55] [55] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): 2300848.

    [56] [56] BERGERHOFF G, HUNDT R, SIEVERS R, et al. The inorganic crystal structure data base[J]. Journal of Chemical Information and Computer Sciences, 1983, 23(2): 66-69.

    [57] [57] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The Cambridge structural database[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(Pt 2): 171-179.

    [58] [58] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002.

    [59] [59] LUNDBERG S, LEE S I. A unified approach to interpreting model predictions[EB/OL]. 2017: arXiv: 1705.07874. http://arxiv.org/abs/1705.07874

    [60] [60] CHU D D, HUANG Y, XIE C W, et al. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: long-neglected nitrides and popular chalcogenides[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300581.

    [61] [61] TONG T H, ZHANG W Y, YANG Z H, et al. Series of crystals with giant optical anisotropy: a targeted strategic research[J]. Angewandte Chemie International Edition, 2021, 60(3): 1332-1338.

    [62] [62] ZHOU Y, GUO Z F, GU H G, et al. A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization[J]. Nature Photonics, 2024, https://doi.org/10.1038/s41566-024-01461-8.

    [63] [63] ZHANG J, WU C F, SHI H S, et al. An interlinked prediction-experiment paradigm discovering deep-ultraviolet fluorooxoborates with desired optical nonlinearity and birefringence[J]. Matter, 2023, 6(4): 1188-1202.

    [64] [64] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231.

    [65] [65] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012, 58: 218-226.

    [66] [66] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010.

    [67] [67] SCHEIDGEN M, HIMANEN L, LADINES A N, et al. NOMAD: a distributed web-based platform for managing materials science research data[J]. The Journal of Open Source Software, 2023, 8(90): 5388.

    [68] [68] TALIRZ L, KUMBHAR S, PASSARO E, et al. Materials Cloud, a platform for open computational science[J]. Scientific Data, 2020, 7: 299.

    [69] [69] LIU M, MENG S. Atomly.net materials database and its application in inorganic chemistry[J]. Scientia Sinica Chimica, 2023, 53(1): 19-25.

    [70] [70] LIANG Y Z, CHEN M W, WANG Y N, et al. A universal model for accurately predicting the formation energy of inorganic compounds[J]. Science China Materials, 2023, 66(1): 343-351.

    [71] [71] YU Z, BO T, LIU B, et al. Superconductive materials with MgB2-like structures from data-driven screening[J]. Physical Review B, 2022, 105(21): 214517.

    [72] [72] XIE C W, TIKHONOV E, CHU D D, et al. A prediction-driven database to enable rapid discovery of nonlinear optical materials[J]. Science China Materials, 2023, 66(11): 4473-4479.

    [73] [73] TUDI A, ZENG H, XIE C W, et al. Uncovering the structural diversity and excellent performance of a deep ultraviolet nonlinear optical system Li(B2O3)nF (n=1, 1.5, 2, and 3) by multicomponent prediction[J]. Chemistry of Materials, 2022, 34(7): 3133-3139.

    [74] [74] TUDI A, XIE C W, PAN S L, et al. Design of novel deep-UV nonlinear optical materials with one-dimensional functional module[BO2]∞ chain and fluorine-driven short phase-matching[J]. Materials Today Physics, 2022, 28: 100852.

    [75] [75] WANG P, CHU Y, TUDI A, et al. The combination of structure prediction and experiment for the exploration of alkali-earth metal-contained chalcopyrite-like IR nonlinear optical material[J]. Advanced Science, 2022, 9(15): e2106120.

    Tools

    Get Citation

    Copy Citation Text

    CHU Dongdong, YANG Zhihua, PAN Shilie. Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach[J]. Journal of Synthetic Crystals, 2024, 53(9): 1475

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 3, 2024

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: YANG Zhihua (zhyang@ms.xjb.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics