Acta Optica Sinica, Volume. 36, Issue 6, 619001(2016)
Spatiotemporal Evolution of the Light Field Inside the Microresonator with Normal Dispersion
[1] [1] Xing Shujian, Zhang Fumin, Cao Shiying, et al.. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2013, 62(17): 170603.
[2] [2] Meng Fei, Cao Shiying, Zhao Guangzhen, et al.. Application of an Er: Doped fiber comb for Sr lattice clock[J]. Chinese J Lasers, 2015, 42(7): 0702012.
[4] [4] Meng Fei, Cao Shiying, Cai Yue, et al.. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2011, 60(10): 100601.
[5] [5] Washburn B R, Fox R W, Newbury N R, et al.. Fiber-laser-based frequency comb with a tunable repetition rate[J]. Optics Express, 2004, 12(20): 4999-5004.
[6] [6] Swann W C, Mcferran J J, Coddington, et al.. Fiber-laser frequency combs with subhertz relative linewidths[J]. Optics Letters, 2006, 31(20): 3046-3048.
[7] [7] Huang Bao, Feng Ming, Chen Xindong, et al.. Optical frequency comb based on mode-locked fiber laser[J]. Laser Journal, 2009, 30(2): 16-19.
[8] [8] Lim J, Knabel K, Tillman K A, et al.. A phase-stabilized carbon nanotube fiber laser frequency comb[J]. Optics Express, 2009, 17(16): 14115-14120.
[9] [9] Chao David. Self-referenced 1.5 μm fiber frequency combs at GHz repetition rates[D]. Cambridge: Massachusetts Institute of Technology, 2012.
[10] [10] Herr T, Brasch V, Jost J D, et al.. Temporal solitons in optical microresonators[J]. Nature Photonics, 2012, 8(2): 145-152.
[11] [11] Lamont M R E, Okawachi Y, Gaeta A L. Route to stabilized ultrabroadband microresonator-based frequency combs[J]. Optics Letters, 2013, 38(18): 3478-3481.
[12] [12] Tilo S, Tobtas W, Constanza A H, et al.. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.
[13] [13] Pfeifle J, Lauermannn M, Wegner D, et al.. Coherent data transmission with microresonator Kerr frequency combs[J]. Nature Photonics, 2013, 8(5): 375-380.
[14] [14] Pascal D, Katja B, Papp S B, et al.. Self-injection locking and phase-locked states in microresonator-based optical frequency combs[J]. Physics Review Letters, 2014, 112(4): 147-241.
[15] [15] Matsko A B, Savchenkov A A, Liang W, et al.. Mode-locked Kerr frequency combs[J]. Optics Letters, 2011, 36(15): 2845-2847.
[16] [16] Lugiato L A, Lefever R. Spatial dissipative structures in passive optical systems[J]. Physics Review Letters, 1987, 25(58): 2209-2211.
[17] [17] Stéphane C, Miro E. Universal scaling laws of Kerr frequency combs[J]. Optics Letters, 2013, 38(11): 1790-1792.
[18] [18] Stéphane C, Randle H G, Thibaut S, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 2013, 38(1): 37-39.
[19] [19] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators[J]. Physics Review A, 2014, 87(5): 053852.
[20] [20] Coen S, Haelterman M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity[J]. Optics Letters, 2001, 26(1): 39-41.
[22] [22] He Jingliang, Hao Xiaopeng, Xu Jinlong, et al.. Ultrafast mode-locked solid-state lasers with graphene saturable absorber[J]. Acta Optica Sinica, 2011, 31(9): 0900138.
Get Citation
Copy Citation Text
Xu Xin, Hu Xiaohong, Feng Ye, Liu Yuanshan, Wang Yishan, Wei Ruyi. Spatiotemporal Evolution of the Light Field Inside the Microresonator with Normal Dispersion[J]. Acta Optica Sinica, 2016, 36(6): 619001
Category: Nonlinear Optics
Received: Jan. 20, 2016
Accepted: --
Published Online: May. 25, 2016
The Author Email: Xin Xu (xuxin_1007@163.com)