Semiconductor Optoelectronics, Volume. 45, Issue 3, 369(2024)

Numerical Simulation of CIGS Thin-Film Solar Cells

CHEN Jinfu1, WANG Li1, DONG Zhihu1, CAIYang2, QIN Xinyu2, and HE Chunqing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] Razykov T M ,Ferekides C S ,Morel D ,et al. Solar photovoltaic electricity: current status and future prospects [J] . Sol. Energy ,2011 ,85(8) : 1580-1608.

    [2] [2] Shin M J ,Park S ,Lee A ,et al. Bifacial photovoltaic performance ofsemitransparentultrathin Cu(In ,Ga) Se2 solar cells withfrontand reartransparentconducting oxide contacts [J] . Appl. Surf. Sci. ,2021 ,535: 147732.

    [3] [3] Hanna G ,Jasenek A ,Rau U ,et al. Influence of the Ga- contenton thebulkdefectdensitiesofCu(In,Ga)Se2[J] . Thin SolidFilms ,2001 ,387(1/2) : 71-73.

    [4] [4] GuillemolesJF. The puzzle of Cu(In ,Ga) Se2 ( CIGS) solar cells stability[J] . Thin SolidFilms ,2002 ,403: 405-409.

    [5] [5] Jimbo K ,Kimura R ,Kamimura T ,et al. Cu2ZnSnS4-type thin film solar cells using abundant materials[J] . Thin Solid Films ,2007 ,515(15) : 5997-5999.

    [6] [6] Ahmed S ,ReuterK B ,Gunawan O ,et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell[ J] . Adv. Energy. Mater. ,2012 ,2(2) : 253-259.

    [7] [7] LincotD ,GuillemolesJF ,TaunierS ,etal. Chalcopyritethin film solar cells by electrodepositicm[J] . Sol. Energy ,2004.

    [8] [8] WagnerS ,Shay J L ,Migliorato P ,et al. CuInSe2/CdS heterojunction photovoltaic detectors[J] . Appl. Phys. Lett. ,1974 ,25(8) : 434-435.

    [9] [9] TarrantD ,ErmerJ. Ⅰ-Ⅲ-Ⅵ2 multinary solar cells based on CuInSe2[C]//Conference Record ofthe TwentyThird IEEE. IEEE ,1993: 372-378.

    [10] [10] RepinsI ,Contreras M A ,Egaas B ,et al. 19. 9 percent- efficientZnO/CdS/CuInGaSe2 solarcellwith81. 2 percentfill factor[J] . Prog. Photovoltaics Res. Appl. ,2008 ,16(3) :235-239.

    [11] [11] Jackson P ,Hariskos D ,Wuerz R ,et al. Compositional investigation of potassium doped Cu( In ,Ga) Se2 solar cells with efficiencies up to 20. 8%[J] . Phys. Status. Solidi-R. ,2014 ,8(3) : 219-222.

    [12] [12] Herrmann D ,Kratzert P ,Weeke S ,et al. CIGS module manufacturing with high deposition rates and efficiencies[C]// Photovoltaic Specialist Conference ( PVSC) ,IEEE ,2014: 2775-2777.

    [13] [13] Jackson ,Philip ,Wuerz ,et al. Cover picture: Effects of heavy alkali elements in Cu ( In ,Ga) Se2 solar cells with efficiencies up to22. 6%[J] . Phys. Status. Solidi-R. ,2016 ,10(8) : 575-648.

    [14] [14] ShockleyW ,Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J] . J. Appl. Phys. ,1961 ,32: 510-519.

    [15] [15] Ouédraogo S ,ZougmoréF ,NdjakaJM. Numericalanalysis of copper-indium-gallium-diselenide-based solar cells by SCAPS-1D[J] . Int. J. Photoenergy ,2013 ,2013(2) : 195-203.

    [16] [16] BelghachiA ,Limam N. Effect of the absorber layer band- gap on CIGS solar cell[J] . Chin. J. Phys. ,2017 ,55(4) :1127-1134.

    [17] [17] Burgelman M ,Nollet P ,Degrave S. Modelling polycrystalline semiconductor solar cells [ J] . Thin Solid Films ,2000 ,361: 527-532.

    [18] [18] Reinhard P ,Chirila A ,BloschP ,et al. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues ofsolar modules[C]//2012 IEEE 38th PhotovoltaicSpecialistsConference (PVSC) PART 2. IEEE ,2012: 1-9.

    [19] [19] Assmann L ,Bernede J C ,DriciA ,et al. Study of the Mo thin filmsand Mo/CIGSinterfaceproperties[J] . Appl. Surf. Sci. ,2005 ,246(1/3) : 159-166.

    [20] [20] Yun J H ,Kim K H ,Ahn B T ,et al. Effect of Na-doped Mo/Mo bilayeron CIGS cells and its photovoltaic properties [C]// 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE ,2006: 509-511.

    [21] [21] SchmidD ,Ruckh M ,Schock H W. A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures[J] . Sol. Energ. Mat. Sol. C. ,1996 ,41:281-294.

    [22] [22] Singh U P ,Patra S P. Progress in polycrystalline thin-film Cu(In,Ga) solarcells[J] . Int. J. Photoenergy ,2010 ,2010: 424-448.

    [23] [23] CraB ,Bh B ,St A ,et al. Enhancing CZTS solar cell parameters using CZTSeBSF layerand non-toxicSnS2/In2S3 bufferlayer[J] . Mater. Today ,2022 ,66(1) : 26-36.

    [24] [24] TalbiA ,Khaaissa Y ,Nouneh K ,et al. Effects of temperature ,thickness ,electron density and defect density on ZnS based solar cells: SCAPS-1D simulation[J] . Mater. Today ,2022 ,66(1) : 116-121.

    [25] [25] Chelvanathan P ,Hossain M I ,Amin N. Performance analysis of copper-indium-gallium-diselenide ( CIGS) solar cells with various buffer layers by SCAPS[J] . Curr. Appl. Phys. ,2010 ,10: S387-S391.

    [26] [26] Chen S ,Walsh A ,Yang J H ,et al. Compositional dependence ofstructuraland electronicpropertiesofCu2ZnSn (S,Se) 4 alloys for thin film solar cells[J] . Phys. Rev. B. ,2011 ,83(12) : 113-115.

    [27] [27] DullweberT ,Rau U ,Contreras M A ,et al. Photogeneration and carrier recombination in graded gap Cu (In,Ga)Se2 solar cells[J] . IEEE. T. Electron Dev. ,2000 ,47(12) : 2249-2254.

    [28] [28] Fujiwara H ,Collins R W. Spectroscopic Ellipsometry for Photovoltaics[M] . Springer ,2018.

    [29] [29] Anderson R L. Germanium-Gallium Arsenide Heterojunctions [J] . IBM Journal of Research and Development ,1960 ,4(3) :283-287.

    [30] [30] Du H J ,WangW C ,MaB ,etal. Band structureadjustment ofsolar cells by gradient doping[J] . Mat. SCI. Semicon. Proc. ,2015 ,40: 570-577.

    [31] [31] DegraveS ,Burgelman M ,Nollet P. Modelling of polycrystalline thin film solar cells: new features in SCAPS version 2. 3 [ C]// IEEE Proc. 3rd World Conf. on Photovoltaic Energy Conversion ,2003: 487-490.

    [32] [32] Nelson J. The Physics of Solar Cells[ M] . Imperial College Press ,2005.

    [33] [33] Huang B ,Chen S ,Deng H X ,et al. Origin of reduced efficiency in Cu ( In ,Ga) Se solar cells with high Ga concentration: Alloy solubility versus intrinsic defects[J] . IEEE. J. Photovolt. ,2014 ,4(1) : 477-482.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Jinfu, WANG Li, DONG Zhihu, CAIYang, QIN Xinyu, HE Chunqing. Numerical Simulation of CIGS Thin-Film Solar Cells[J]. Semiconductor Optoelectronics, 2024, 45(3): 369

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 3, 2024

    Accepted: --

    Published Online: Oct. 15, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2024010302

    Topics