Opto-Electronic Engineering, Volume. 51, Issue 1, 230284-1(2024)

Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ

Dongdong Zhao1, Dunhan Xie1, Peng Chen1、*, Ronghua Liang1, Yi Shen1, and Xinxin Guo2
Author Affiliations
  • 1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
  • show less
    Figures & Tables(15)
    Lightweight sonar image YOLOv5 object detection network model
    Depthwise separable convolution structure
    GSConv structure diagram
    CBAM module structure diagram
    SimAM structure diagram
    Diagram of the sonar system
    Sonar system workflow diagram
    Model conversion process
    Distribution of the number of images in the dataset
    Data-enhanced images
    Different algorithm image detection result comparison
    • Table 1. Running results of different equipments

      View table
      View in Article

      Table 1. Running results of different equipments

      EquipmentFLOPs/GMemory footprint/MBFrame rate/FPSPower/WFrame rate/power/(FPS/W)
      GPU6.0140136.42500.146
      CPU6.021038.8650.135
      ZYNQ70205.8900.63.70.162
    • Table 2. Comparative experiments

      View table
      View in Article

      Table 2. Comparative experiments

      AlgorithmMap50Params(M)
      YOLOv5s0.9127.2
      EfficientDet0.8343.9
      YOLOv70.89037
      Faster-RCNN0.89625.6
      SSD0.91251
      This paper0.9333.2
    • Table 3. Ablation experiments

      View table
      View in Article

      Table 3. Ablation experiments

      AlgorithmPrecisionRecallMap50Map50-95Params(M)
      YOLOv5s0.8960.9050.9120.6857.2
      YOLOv5s+SimAM0.8920.9110.9220.7007.0
      YOLOv5s+CBAM0.8960.9270.9180.6977.1
      YOLOv5s+SimAM+CBAM0.8920.9120.9250.7017.1
      YOLOv5s+Focal-CIOU0.8990.8910.9300.7007.2
      YOLOv5s+DWConv0.8800.9110.9190.6943.6
      YOLOv5s+GSConv0.8970.9060.9230.6996.2
      This paper0.9070.8940.9330.7123.2
    • Table 4. Comparison experiment of classic datasets

      View table
      View in Article

      Table 4. Comparison experiment of classic datasets

      AlgorithmPrecisionRecallMap50Map50-95
      YOLOv5s0.6780.530.5830.353
      This paper0.6610.5190.590.339
    Tools

    Get Citation

    Copy Citation Text

    Dongdong Zhao, Dunhan Xie, Peng Chen, Ronghua Liang, Yi Shen, Xinxin Guo. Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ[J]. Opto-Electronic Engineering, 2024, 51(1): 230284-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 21, 2023

    Accepted: Jan. 10, 2024

    Published Online: Apr. 19, 2024

    The Author Email: Peng Chen (陈朋)

    DOI:10.12086/oee.2024.230284

    Topics