Journal of Fudan University(Natural Science), Volume. 64, Issue 3, 367(2025)
Music Generation Method Based on Music Gene Expression Programming
[1] [1] CIVIT M, CIVIT-MASOT J, CUADRADO F, et al. A systematic review of artificial intelligence-based music generation: Scope, applications, and future trends[J].Expert Systems with Applications, 2022,209: 118190.
[2] [2] ZHU H, LIU Q, YUAN N J, et al. Pop music generation: From melody to multi-style arrangement[J].ACM Transactions on Knowledge Discovery from Data, 2020,14(5): 1-31.
[3] [3] JI S, YANG X, LUO J. A survey on deep learning for symbolic music generation: Representations, algorithms, evaluations, and challenges[J].ACM Computing Surveys, 2023,56(1): 1-39.
[4] [4] LI F. Chord-based music generation using long short-term memory neural networks in the context of artificial intelligence[J].The Journal of Supercomputing, 2024,80(5): 6068-6092.
[5] [5] CHU H, URTASUN R, FIDLER S. Song from PI: A musically plausible network for pop music generation[J/OL]. (2016-11-10)[2024-01-22]. https://arxiv.org/abs/1611.03477.
[6] [6] LIU I, Ramakrishnan B. Bach in 2014: Music composition with recurrent neural network[J/OL]. (2014-12-14)[2024-01-22]. https://arxiv.org/abs/1412.3191.
[7] [7] LUO S. Bach genre music generation with WaveNet—A steerable CNN-based method with different temperature parameters[C]//Proceedings of the 4th International Conference on Intelligent Science and Technology. New York, USA: ICIST, 2022: 40-46.
[8] [8] ZHU Y, OLSZEWSKI K, WU Y, et al. Quantized gan for complex music generation from dance videos[C]//European Conference on Computer Vision. Cham, Switzerland: Springer, 2022: 182-199.
[9] [9] ROGOZINSKY G G, SHCHEKOCHIKHIN A. On VAE latent space vectors distributed evolution driven music generation[C]//11th Majorov International Conference on Software Engineering and Computer Systems. Saint Petersburg, Russia: MICSECS, 2019: 22.
[10] [10] JIANG J. DJ-Agent: Music theory directed a cappella accompaniment generation using deep reinforcement learning[C]//Fifth International Conference on Computer Information Science and Artificial Intelligence. Chongqing, China: CISAI, 2023: 971-979.
[11] [11] ROBERTS A, ENGEL J, RAFFEL C, et al. A hierarchical latent vector model for learning long-term structure in music[C]//International Conference on Machine Learning. Stockholm, Sweden: ICML, 2018: 4364-4373.
[12] [12] DONG H W, HSIAO W Y, YANG L C, et al. MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[J].Proceedings of the AAAI Conference on Artificial Intelligence.2018,32(1): 11312.
[13] [13] JAQUES N, GU S, Turner R E, et al. Tuning recurrent neural networks with reinforcement learning[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017: 1-12.
[14] [14] COLOMBO F, SEEHOLZER A, GERSTNER W. Deep artificial composer: A creative neural network model for automated melody generation[C]//International Conference on Evolutionary and Biologically Inspired Music and Art. Cham, Switzerland: Springer, 2017: 81-96.
[15] [15] CASELLA P, PAIVA A. Magenta: An architecture for real time automatic composition of background music[C]//International Workshop on Intelligent Virtual Agents. Berlin, Germany: Springer, 2001: 224-232.
[16] [16] SHENG Z, SONG K, TAN X, et al. Song MASS: Automatic song writing with pre-training and alignment constraint[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(15): 13798-13805.
[17] [17] JIANG N, JIN S, DUAN Z, et al. RL-Duet: Online music accompaniment generation using deep reinforcement learning[J].Proceedings of the AAAI conference on artificial intelligence, 2020,34(1): 710-718.
[18] [18] MAO H H, SHIN T, COTTRELL G. DeepJ: Style-specific music generation[C]//IEEE 12th International Conference on Semantic Computing. California, USA: IEEE, 2018: 377-382.
[19] [19] JIN C, TIE Y, BAI Y, et al. A style-specific music composition neural network[J].Neural Processing Letters, 2020,52: 1893-1912.
[20] [20] FERREIRA C. Gene expression programming: A new adaptive algorithm for solving problems[J/OL]. (2001-11-30)[2024-01-22]. https://arxiv.org/abs/cs/0102027.
[21] [21] GOEHR A. The theoretical writings of Arnold Schoenberg[J].Perspectives of New Music, 1975,100: 3-16.
[22] [22] PRIETO A, PRIETO B, ORTIGOSA E M, et al. Neural networks: An overview of early research, current frameworks and new challenges[J].Neurocomputing, 2016,214: 242-268.
[23] [23] LI Z, LIU F, YANG W, et al. A survey of convolutional neural networks: Analysis, applications, and prospects[J].IEEE Transactions on Neural Networks and Learning Systems, 2021,33(12): 6999-7019.
[24] [24] CATALTEPE Z, YASLAN Y, SONMEZ A. Music genre classification using MIDI and audio features[J].EURASIP Journal on Advances in Signal Processing, 2007,2007: 1-8.
[25] [25] YANG X, SONG Z, KING I, et al. A survey on deep semi-supervised learning[J].IEEE Transactions on Knowledge and Data Engineering, 2022,35(9): 8934-8954.
[26] [26] KINGMA D P. Adam: A method for stochastic optimization[J/OL]. (2017-01-30)[2024-01-22]. https://arxiv.org/abs/1412.6980.
[27] [27] MANZELLI R, THAKKAR V, SIAHKAMARI A, et al. An end to end model for automatic music generation: Combining deep raw and symbolic audio networks[C]//6th International Workshop on Musical Metacreation. Salamanca, Spain: MUME, 2018: 1-6.
[28] [28] HUANG Y S, YANG Y H. Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 1180-1188.
Get Citation
Copy Citation Text
ZHOU Xuanfei, WANG Chen, LUO Weicheng. Music Generation Method Based on Music Gene Expression Programming[J]. Journal of Fudan University(Natural Science), 2025, 64(3): 367