Journal of Infrared and Millimeter Waves, Volume. 42, Issue 6, 806(2023)
A review on Terahertz lens antennas
[1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).
[2] He Y J, Chen Y L, Zhang L et al. An overview of Terahertz antennas[J]. China Communications, 17, 124-165(2020).
[3] Hu J, Lyu W T, Zhu H T et al. Design, uncertainty analysis, and measurement of a silicon-based platelet THz corrugated horn[J]. IEEE Transactions on Antennas and Propagation, 70, 5897-5901(2022).
[4] Wu G B, Zeng Y S, Chan K F et al. 3-D printed 3-D near-field focus-scanning lens for Terahertz applications[J]. IEEE Transactions on Antennas and Propagation, 70, 10007-10016(2022).
[5] Miguel Camacho M, Boix R R, Kuznetsov S A et al. Far-Field and near-field physics of extraordinary THz transmitting hole-array antennas[J]. IEEE Transactions on Antennas and Propagation, 67, 6029-6038(2019).
[6] Qu S W, Xiao L, Yi H et al. Frequency-controlled 2-D focus-scanning Terahertz reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 67, 1573-1581(2019).
[7] Abohmra A, hassan Abbas H, Al-hasan M et al. Terahertz antenna array based on a hybrid perovskite structure[J]. IEEE Open Journal of Antennas and Propagation, 1, 464-471(2020).
[8] Alibakhshikenari M, Virdee B S, Khalily M et al. High-gain on-chip antenna design on silicon layer with aperture excitation for Terahertz applications[J]. IEEE Antennas and Wireless Propagation Letters, 19, 1576-1580(2020).
[9] Grzyb J, Andree M, Jain R et al. A lens-coupled on-chip antenna for dual-polarization SiGe HBT THz direct detector[J]. IEEE Antennas and Wireless Propagation Letters, 18, 2404-2408(2019).
[10] Wu G B, Zeng Y S, Chan K F et al. 3-D printed 3-D near-field focus-scanning lens for Terahertz applications[J]. IEEE Transactions on Antennas and Propagation, 70, 10007-10016(2022).
[11] He X Y, Yang Y, Deng L et al. 3D printed sub-Terahertz all-dielectric lens for arbitrary manipulation of quasi-nondiffractive orbital angular momentum waves[J]. ACS Applied Materials & Interfaces, 13, 20770-20778(2021).
[12] Abbaszadeh A, Ahmadi-Boroujeni M, Tehranian A. Generating uniform irradiance in the Fresnel region by quasi-optical beam shaping of a millimeter-wave source[J]. Optics Express, 27, 32135-32146(2019).
[13] Yi X, Wang C, Chen X B et al. A 220-to-320-GHz FMCW radar in 65-nm CMOS using a frequency-comb architecture[J]. IEEE Journal of Solid-State Circuits, 56, 327-339(2021).
[14] Wu G B, Chan K F, Shum K M et al. Millimeter-wave and Terahertz OAM discrete-lens antennas for 5G and beyond[J]. IEEE Communications Magazine, 60, 34-39(2022).
[15] Wu G B, Zeng Y S, Chan K F et al. 3-D printed circularly polarized modified fresnel lens operating at Terahertz frequencies[J]. IEEE Transactions on Antennas and Propagation, 67, 4429-4437(2019).
[16] Lu P, Haddad T, Tebart J et al. Mobile THz communications using photonic assisted beam steering leaky-wave antennas[J]. Optics Express, 29, 21629-21638(2021).
[17] Liao D S, Wang M T, Chan K F et al. A deep-learning enabled discrete dielectric lens antenna for Terahertz reconfigurable holographic imaging[J]. IEEE Antennas and Wireless Propagation Letters, 21, 823-827(2022).
[18] Bauer M, Rämer A, Chevtchenko S A et al. A high-sensitivity AlGaN/GaN HEMT Terahertz detector with integrated broadband bow-tie antenna[J]. IEEE Transactions on Terahertz Science and Technology, 11, 430-444(2019).
[19] Wu G B, Chan K F, Chan C H. 3-D printed Terahertz lens to generate higher order Bessel beams carrying OAM[J]. IEEE Transactions on Antennas and Propagation, 69, 3399-3408(2021).
[20] Wu G B, Chan K F, Qu S W et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 10, 480-489(2020).
[21] Wu G B, Chan K F, Qu S W et al. A 2-D beam-scanning Bessel launcher for Terahertz applications[J]. IEEE Transactions on Antennas and Propagation, 68, 5893-5903(2020).
[22] Amarasinghe Y, Mendis R, Shrestha R et al. Broadband wide‑angle terahertz antenna based on the application of transformation optics to a Luneburg lens[J]. Scientific Reports, 11, 5230(2021).
[23] Gan Y E, Mirzaei B, Poel S V D et al. 3.9 THz spatial filter based on a back-to-back Si-lens system[J]. Optics Express, 28, 32693-32708(2020).
[24] Wu G B, Zeng Y S, Chan K F et al. High-gain circularly polarized lens antenna for Terahertz applications[J]. IEEE Antennas and Wireless Propagation Letters, 18, 921-925(2019).
[25] Zhu J F, Yang Yang Y, McGloin D et al. Sub-Terahertz 3-D printed all-dielectric low-cost low-profile lens-integrated polarization beam splitter[J]. IEEE Transactions on Terahertz Science and Technology, 11, 433-442(2021).
[26] Kokkonen M, Ghavidel A, Tervo N et al. An ultralight high-directivity ceramic composite lens antenna for 220-330 GHz[J]. IEEE Access, 9, 156592-156598(2021).
[27] Guimarães G, Reynaert P. A 670-GHz 4 × 2 oscillator–radiator array achieving 7.4-dBm EIRP in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 56, 3399-3411(2021).
[28] Garufo A, Sberna P M, Carluccio G et al. A connected array of coherent photoconductive pulsed sources to generate mW average power in the submillimeter wavelength band[J]. IEEE Transactions on Terahertz Science and Technology, 9, 221-236(2019).
[29] Ponomarev D S, Lavrukhin D V, Zenchenko N V et al. Boosting photoconductive large-area THz emitter via optical light confinement behind a highly refractive sapphire-fiber lens[J]. Optics Letters, 47, 1899-1902(2022).
[30] Chen X B, Yi X, Khan M I W et al. A 140-GHz FMCW TX/RX-antenna-sharing transceiver with low-inherent-loss duplexing and adaptive self-interference cancellation[J]. IEEE Journal of Solid-State Circuits, 57, 3631-3645(2022).
[31] Gao L, Chan C H. A 0.45-THz 2-D scalable radiator array with 28.2-dBm EIRP using an elliptical Teflon lens[J]. IEEE Journal of Solid-State Circuits, 57, 400-412(2022).
[32] Zatta R, Jain R, Grzyb J et al. Resolution limits of hyper-hemispherical silicon lens-integrated THz cameras employing geometrical multiframe super-resolution imaging[J]. IEEE Transactions on Terahertz Science and Technology, 11, 277-286(2021).
[33] Gao L, Chan C H. A 0.47-THz ring scalable coupled oscillator–radiator array with miniature patch antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 70, 3964-3974(2022).
[35] Chudpooti N, Duangrit N, Akkaraekthalin P et al. 220-320 GHz hemispherical lens antennas using digital light processed photopolymers[J]. IEEE Access, 7, 12283-12290(2019).
[36] Bunea A C, Neculoiu D, Stavrinidis A et al. Monolithic integrated Schottky diode multiplier and rectenna for wireless communication link in the W band[J]. IEEE Access, 10, 107386-107394(2022).
[37] Jalili H, Momeni O. A 0.46-THz 25-element scalable and wideband radiator array with optimized lens integration in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 55, 2387-2400(2020).
[38] Gao L, Chan C H. A 0.68–0.72-THz 2-D scalable radiator array with -3-dBm radiated power and 27.3-dBm EIRP in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 57, 3114-3124(2022).
[39] Grzyb J, Rodríguez-Vázquez P, Malz S et al. A SiGe HBT 215–240 GHz DCA IQ TX/RX chipset with built-in test of USB/LSB RF asymmetry for 100+ Gb/s data rates[J]. IEEE Transactions on Microwave Theory and Techniques, 70, 1696-1714(2022).
[40] Berkel S V, Malotaux E S, Martino C D et al. Wideband double leaky slot lens antennas in CMOS technology at submillimeter wavelengths[J]. IEEE Transactions on Terahertz Science and Technology, 10, 540-553(2020).
[41] Joint F, Gay G, Vigneron P B et al. Compact and sensitive heterodyne receiver at 2.7 THz exploiting a quasi-optical HEB-QCL coupling scheme[J]. Applied Physics Letters, 115, 231104(2019).
[42] Berkel S V, Malotaux E S, Martino C D et al. Wideband modeling of CMOS Schottky barrier diode detectors for THz radiometry[J]. IEEE Transactions on Terahertz Science and Technology, 11, 495-507(2021).
[43] Wang T, He J W, Guo J Y et al. Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide[J]. Optics Express, 27, 20347-20357(2019).
[44] Katyba G M, Raginov N I, Khabushev E M et al. Tunable THz flat zone plate based on stretchable single-walled carbon nanotube thin film[J]. Optica, 10, 53-61(2023).
[45] Li J W, Wang Y L, Liu S J et al. Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging[J]. Optics Express, 30, 28882-28891(2022).
[46] Sang D, Xu M F, Pu M B et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser & Photonics Reviews, 16, 2200265(2022).
[47] Al‑Daffaie S, Jumaah A J, Rubio V L et al. Design and implementation of a terahertz lens‑antenna for a photonic integrated circuits based THz systems[J]. Scientific Reports, 12, 1476(2022).
[48] Zatta R, Jagtap V S, Grzyb J et al. Broadband lens-integrated CMOS camera-type THz compact antenna test range[J]. IEEE Transactions on Terahertz Science and Technology, 11, 527-537(2021).
[49] Ullah N, Liu W G, Wang G C et al. Gate-controlled terahertz focusing based on graphene-loaded metasurface[J]. Optics Express, 28, 2789-2798(2020).
[50] Ferreras M, Cibiraite-Lukenskiene D, Lisauskas A et al. Broadband sensing around 1 THz via a novel biquad-antenna-coupled low-NEP detector in CMOS[J]. IEEE Transactions on Terahertz Science and Technology, 11, 16-27(2021).
[51] Guo J Y, Wang T, Zhao H et al. Reconfigurable Terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 7, 1801696(2019).
[52] Kinev N V, Rudakov K I, FilippenkoL V et al. Terahertz source radiating to open space based on the superconducting flux-flow oscillator: development and characterization[J]. IEEE Transactions on Terahertz Science and Technology, 9, 557-564(2019).
[53] Gan Y, Mirzaei B, Silva J R G D et al. Low noise MgB2 hot electron bolometer mixer operated at 5.3 THz and at 20K[J]. Applied Physics Letters, 119, 202601(2021).
[54] Baselmans J J A, Facchin F, Laguna A P et al. Ultra-sensitive THz microwave kinetic inductance detectors for future space telescopes[J]. Astronomy & Astrophysics, 665, A17(2022).
[55] Suzuki Y, Mai T V, Yu X B et al. Phase control of Terahertz waves using injection-locked resonant tunneling diode oscillator[J]. IEEE Transactions on Terahertz Science and Technology, 12, 481-488(2022).
[56] Glück A, Rothbart N, Schmalz K et al. SiGe BiCMOS heterodyne receiver frontend for remote sensing with small satellites[J]. IEEE Transactions on Terahertz Science and Technology, 12, 603-610(2022).
[57] Freer S, Gorodetsky A, Navarro-Cia M. Beam profiling of a commercial lens-assisted Terahertz time domain spectrometer[J]. IEEE Transactions on Terahertz Science and Technology, 11, 90-100(2021).
[58] Chudpooti N, Duangrit N, Akkaraekthalin P et al. Electronics-based free-space Terahertz measurement using hemispherical lens antennas[J]. IEEE Access, 7, 95536-95546(2019).
[59] Silva J R G, Finkel M, Laauwen W M et al. High accuracy pointing for quasi-optical THz mixer arrays[J]. IEEE Transactions on Terahertz Science and Technology, 12, 53-62(2022).
[60] Yuan H, Voß D, Lisauskas A et al. 3D Fourier imaging based on 2D heterodyne detection at THz frequencies[J]. APL Photonics, 4, 106108(2019).
Get Citation
Copy Citation Text
Yi-Cong CHEN, Shuo-Bo WANG, Guo-Hua ZHAI, Jian-Jun GAO. A review on Terahertz lens antennas[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 806
Category: Research Articles
Received: Apr. 6, 2023
Accepted: --
Published Online: Dec. 26, 2023
The Author Email: Jian-Jun GAO (jjgao@ee.ecnu.edu.cn)