Spectroscopy and Spectral Analysis, Volume. 43, Issue 4, 1043(2023)
Wavelength Selection Method of Near-Infrared Spectrum Based on Random Forest Feature Importance and Interval Partial Least Square Method
[4] [4] Lee S, Choi H, Cha K, et al. Microchemical Journal, 2013, 110(7): 39.
[5] [5] Epifanio I. BMC Bioinformatics, 2017, 18(1): 230.
[6] [6] Nicodemus K K, Malley J D, Strobl C, et al. BMC Bioinformatics, 2010, 11(1): 110.
[14] [14] Breiman L. Machine Learning, 2001, 45(1): 5.
[16] [16] Wang X, Ma T M, Yang T, et al. International Journal of Agricultural and Biological Engineering, 2019, 12(2): 132.
[21] [21] Liu J, Sun S, Tan Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 242: 118718.
[22] [22] Ridgway C, Chambers J. Journal of the Science of Food & Agriculture, 2015, 71(2): 251.
Get Citation
Copy Citation Text
CHEN Rui, WANG Xue, WANG Zi-wen, QU Hao, MA Tie-min, CHEN Zheng-guang, GAO Rui. Wavelength Selection Method of Near-Infrared Spectrum Based on Random Forest Feature Importance and Interval Partial Least Square Method[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1043
Received: Feb. 7, 2022
Accepted: --
Published Online: May. 3, 2023
The Author Email: