Spectroscopy and Spectral Analysis, Volume. 43, Issue 4, 1043(2023)

Wavelength Selection Method of Near-Infrared Spectrum Based on Random Forest Feature Importance and Interval Partial Least Square Method

CHEN Rui1, WANG Xue1,2, WANG Zi-wen1, QU Hao1, MA Tie-min1, CHEN Zheng-guang1, and GAO Rui3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(7)

    [4] [4] Lee S, Choi H, Cha K, et al. Microchemical Journal, 2013, 110(7): 39.

    [5] [5] Epifanio I. BMC Bioinformatics, 2017, 18(1): 230.

    [6] [6] Nicodemus K K, Malley J D, Strobl C, et al. BMC Bioinformatics, 2010, 11(1): 110.

    [14] [14] Breiman L. Machine Learning, 2001, 45(1): 5.

    [16] [16] Wang X, Ma T M, Yang T, et al. International Journal of Agricultural and Biological Engineering, 2019, 12(2): 132.

    [21] [21] Liu J, Sun S, Tan Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 242: 118718.

    [22] [22] Ridgway C, Chambers J. Journal of the Science of Food & Agriculture, 2015, 71(2): 251.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Rui, WANG Xue, WANG Zi-wen, QU Hao, MA Tie-min, CHEN Zheng-guang, GAO Rui. Wavelength Selection Method of Near-Infrared Spectrum Based on Random Forest Feature Importance and Interval Partial Least Square Method[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1043

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 7, 2022

    Accepted: --

    Published Online: May. 3, 2023

    The Author Email:

    DOI:10.3964/j.issn.1000-0593(2023)04-1043-08

    Topics