Acta Optica Sinica, Volume. 44, Issue 10, 1026016(2024)

Wavefront Shaping Methods for Scattering Light Field Regulation and Its Imaging Application (Invited)

Yuecheng Shen1, Jiawei Luo2, Zhiling Zhang1, and Shian Zhang1,3,4、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • 2School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, Guangdong , China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 4Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • show less
    References(136)

    [1] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).

    [2] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [3] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [4] Chance B, Kang K, He L et al. Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions[J]. Proceedings of the National Academy of Sciences, 90, 3423-3427(1993).

    [5] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 101, 120601(2008).

    [6] Choi W, Mosk A P, Park Q H et al. Transmission eigenchannels in a disordered medium[J]. Physical Review B, 83, 134207(2011).

    [7] Chong Y D, Stone A D. Hidden black: coherent enhancement of absorption in strongly scattering media[J]. Physical Review Letters, 107, 163901(2011).

    [8] Goetschy A, Stone A D. Filtering random matrices: the effect of incomplete channel control in multiple scattering[J]. Physical Review Letters, 111, 063901(2013).

    [9] Liew S F, Popoff S M, Mosk A P et al. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport[J]. Physical Review B, 89, 224202(2014).

    [10] Popoff S M, Goetschy A, Liew S F et al. Coherent control of total transmission of light through disordered media[J]. Physical Review Letters, 112, 133903(2014).

    [11] Kim M, Choi W, Yoon C Y et al. Exploring anti-reflection modes in disordered media[J]. Optics Express, 23, 12740-12749(2015).

    [12] Liew S F, Cao H. Modification of light transmission channels by inhomogeneous absorption in random media[J]. Optics Express, 23, 11043-11053(2015).

    [13] Hsu C W, Goetschy A, Bromberg Y et al. Broadband coherent enhancement of transmission and absorption in disordered media[J]. Physical Review Letters, 115, 223901(2015).

    [14] Yamilov A, Petrenko S, Sarma R et al. Shape dependence of transmission, reflection, and absorption eigenvalue densities in disordered waveguides with dissipation[J]. Physical Review B, 93, 100201(2016).

    [15] He Y, Wu D X, Zhang R S et al. Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices[J]. Optics Express, 29, 20353-20369(2021).

    [16] Beckwith P H, McMichael I, Yeh P. Image distortion in multimode fibers and restoration by polarization-preserving phase conjugation[J]. Optics Letters, 12, 510-512(1987).

    [17] McMichael I, Yeh P, Beckwith P. Correction of polarization and modal scrambling in multimode fibers by phase conjugation[J]. Optics Letters, 12, 507-509(1987).

    [18] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [19] Cao R Z, de Goumoens F, Blochet B et al. High-resolution non-line-of-sight imaging employing active focusing[J]. Nature Photonics, 16, 462-468(2022).

    [20] Zhu Y M, Zeng T J, Liu K W et al. Full scene underwater imaging with polarization and an untrained network[J]. Optics Express, 29, 41865-41881(2021).

    [21] Liu Y, Ma C, Shen Y C et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).

    [22] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).

    [23] Park J, Park J H, Yu H et al. Focusing through turbid media by polarization modulation[J]. Optics Letters, 40, 1667-1670(2015).

    [24] Wang D F, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).

    [25] Shen Y C, Liu Y, Ma C et al. Focusing light through scattering media by full-polarization digital optical phase conjugation[J]. Optics Letters, 41, 1130-1133(2016).

    [26] Shen Y C, Liu Y, Ma C et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J]. Optica, 4, 97-102(2017).

    [27] Yang J M, Shen Y C, Liu Y et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation[J]. Applied Physics Letters, 111, 201108(2017).

    [28] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [29] Huang H L, Chen Z Y, Sun C Z et al. Light focusing through scattering media by particle swarm optimization[J]. Chinese Physics Letters, 32, 104202(2015).

    [30] Fang L J, Zuo H Y, Yang Z G et al. Particle swarm optimization to focus coherent light through disordered media[J]. Applied Physics B, 124, 155(2018).

    [31] Fang L J, Zhang X C, Zuo H Y et al. Focusing light through random scattering media by four-element division algorithm[J]. Optics Communications, 407, 301-310(2018).

    [32] Wu Y L, Zhang X D, Yan H M. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping[J]. Optik, 158, 558-564(2018).

    [33] Wu Z H, Luo J W, Feng Y H et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm[J]. Optics Express, 27, 5570-5580(2019).

    [34] Wu D X, Qin L X, Luo J W et al. Delivering targeted color light through a multimode fiber by field synthesis[J]. Optics Express, 28, 19700-19710(2020).

    [35] Zhao Y Y, He Q Z, Li S N et al. Gradient-assisted focusing light through scattering media[J]. Optics Letters, 46, 1518-1521(2021).

    [36] Woo C M, Li H H, Zhao Q et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping[J]. Optics Express, 29, 18420-18426(2021).

    [37] Luo J W, Wu Z H, Wu D X et al. Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping[J]. Optics Letters, 44, 4067-4070(2019).

    [38] Wu D X, Luo J W, Li Z H et al. A thorough study on genetic algorithms in feedback-based wavefront shaping[J]. Journal of Innovative Optical Health Sciences, 12, 1942004(2019).

    [39] Luo J W, Liang J J, Wu D X et al. Simultaneous dual-channel data transmission through a multimode fiber via wavefront shaping[J]. Applied Physics Letters, 123, 151106(2023).

    [40] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).

    [41] Yang Z G, Fang L J, Zhang X C et al. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm[J]. Optics and Lasers in Engineering, 144, 106646(2021).

    [42] Li H H, Woo C M, Zhong T T et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 9, 202-212(2021).

    [43] Conkey D B, Caravaca-Aguirre A M, Dove J D et al. Super-resolution photoacoustic imaging through a scattering wall[J]. Nature Communications, 6, 7902(2015).

    [44] Osnabrugge G, Horstmeyer R, Papadopoulos I N et al. Generalized optical memory effect[J]. Optica, 4, 886-892(2017).

    [45] Liu H L, Liu Z T, Chen M J et al. Physical picture of the optical memory effect[J]. Photonics Research, 7, 1323-1330(2019).

    [46] Feng S, Kane C, Lee P A et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).

    [47] Schott S, Bertolotti J, Léger J F et al. Characterization of the angular memory effect of scattered light in biological tissues[J]. Optics Express, 23, 13505-13516(2015).

    [48] Judkewitz B, Horstmeyer R, Vellekoop I M et al. Translation correlations in anisotropically scattering media[J]. Nature Physics, 11, 684-689(2015).

    [49] Wang C, Ji N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics[J]. Optics Express, 21, 27142-27154(2013).

    [50] Amitonova L V, Mosk A P, Pinkse P W H. Rotational memory effect of a multimode fiber[J]. Optics Express, 23, 20569-20575(2015).

    [51] Ma C J, Di J L, Li Y et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation[J]. Applied Physics Express, 11, 062501(2018).

    [52] Wei X M, Shen Y C, Jing J C et al. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb[J]. Science Advances, 6, eaay1192(2020).

    [53] Zhu L D, de Monvel J B, Berto P et al. Chromato-axial memory effect through a forward-scattering slab[J]. Optica, 7, 338-345(2020).

    [54] Zhang R S, Du J Y, He Y et al. Characterization of the spectral memory effect of scattering media[J]. Optics Express, 29, 26944-26954(2021).

    [55] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [56] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

    [57] Xu J, Ruan H W, Liu Y et al. Focusing light through scattering media by transmission matrix inversion[J]. Optics Express, 25, 27234-27246(2017).

    [58] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).

    [59] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).

    [60] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).

    [61] Drémeau A, Liutkus A, Martina D et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 23, 11898-11911(2015).

    [62] N'Gom M, Lien M B, Estakhri N M et al. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method[J]. Scientific Reports, 7, 2518(2017).

    [63] N'Gom M, Norris T B, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).

    [64] Deng L, Yan J D, Elson D S et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system[J]. Optics Express, 26, 18436-18447(2018).

    [65] Zhao T R, Deng L, Wang W et al. Bayes' theorem-based binary algorithm for fast reference-less calibration of a multimode fiber[J]. Optics Express, 26, 20368-20378(2018).

    [66] Huang G Q, Wu D X, Luo J W et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter[J]. Optics Express, 28, 9487-9500(2020).

    [67] Huang G Q, Wu D X, Luo J W et al. Generalizing the Gerchberg-Saxton algorithm for retrieving complex optical transmission matrices[J]. Photonics Research, 9, 34-42(2020).

    [68] Wang Z Y, Wu D X, Huang G Q et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system[J]. Optics Letters, 46, 5542-5545(2021).

    [69] Ancora D, Dominici L, Gianfrate A et al. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg-Saxton single-iteration algorithm[J]. Photonics Research, 10, 2349-2358(2022).

    [70] Wu D X, Luo J W, Lu Z B et al. Two-stage matrix-assisted glare suppression at a large scale[J]. Photonics Research, 10, 2693-2701(2022).

    [71] Wu D X, Wang Z Y, Wang J et al. Probabilistic phase shaping guided wavefront control of complex media with information-limited intensity measurements[J]. Laser & Photonics Reviews, 17, 2300110(2023).

    [72] Moon J, Cho Y C, Kang S et al. Measuring the scattering tensor of a disordered nonlinear medium[J]. Nature Physics, 19, 1709-1718(2023).

    [73] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).

    [74] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [75] Rahmani B, Loterie D, Konstantinou G et al. Multimode optical fiber transmission with a deep learning network[J]. Light, Science & Applications, 7, 69(2018).

    [76] Zhang L H, Xu R C, Ye H L et al. High definition images transmission through single multimode fiber using deep learning and simulation speckles[J]. Optics and Lasers in Engineering, 140, 106531(2021).

    [77] Zhu C Y, Chan E A, Wang Y et al. Image reconstruction through a multimode fiber with a simple neural network architecture[J]. Scientific Reports, 11, 896(2021).

    [78] Tang P S, Zheng K P, Yuan W M et al. Learning to transmit images through optical speckle of a multimode fiber with high fidelity[J]. Applied Physics Letters, 121, 081107(2022).

    [79] Liu Y F, Zhang Z S, Yu P P et al. Learning-enabled recovering scattered data from twisted light transmitted through a long standard multimode fiber[J]. Applied Physics Letters, 120, 131101(2022).

    [80] Fan P F, Zhao T R, Su L. Deep learning the high variability and randomness inside multimode fibers[J]. Optics Express, 27, 20241-20258(2019).

    [81] Resisi S, Popoff S M, Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning[J]. Laser & Photonics Reviews, 15, 2000553(2021).

    [82] Fan P F, Ruddlesden M, Wang Y F et al. Learning enabled continuous transmission of spatially distributed information through multimode fibers[J]. Laser & Photonics Reviews, 15, 2000348(2021).

    [83] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 26, 30911-30929(2018).

    [84] Rahmani B, Loterie D, Kakkava E et al. Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media[J]. Nature Machine Intelligence, 2, 403-410(2020).

    [85] Xiang C C, Xiao Y S, Dai Y et al. Controlling light focusing through scattering medium with superpixel-based deep learning method[J]. Optik, 262, 169277(2022).

    [86] Wang J, Zhong G C, Wu D X et al. Multimode fiber-based greyscale image projector enabled by neural networks with high generalization ability[J]. Optics Express, 31, 4839-4850(2023).

    [87] Huang S T, Wang J, Wu D X et al. Projecting colorful images through scattering media via deep learning[J]. Optics Express, 31, 36745-36753(2023).

    [88] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light, Science & Applications, 9, 149(2020).

    [89] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).

    [90] Feng B Y, Guo H Y, Xie M Y et al. NeuWS: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media[J]. Science Advances, 9, eadg4671(2023).

    [91] Shen Y C, Liu Y, Ma C et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 21, 085001(2016).

    [92] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [93] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).

    [94] Hsieh C L, Pu Y, Grange R et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 18, 20723-20731(2010).

    [95] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).

    [96] Hillman T R, Yamauchi T, Choi W et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media[J]. Scientific Reports, 3, 1909(2013).

    [97] Liu Y, Ma C, Shen Y C et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Optics Letters, 41, 1321-1324(2016).

    [98] Hemphill A S, Shen Y C, Liu Y et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Applied Physics Letters, 111, 221109(2017).

    [99] Liu Y, Shen Y C, Ruan H W et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 23, 010501(2018).

    [100] Luo J W, Liu Y, Wu D X et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering[J]. Science Advances, 8, eadd9158(2022).

    [101] Jang M, Ruan H W, Zhou H J et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 22, 14054-14071(2014).

    [102] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials[J]. Applied Optics, 55, 2873-2880(2016).

    [103] Hemphill A S, Shen Y C, Hwang J et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials[J]. Journal of Biomedical Optics, 24, 031004(2018).

    [104] Yu Y W, Sun C C, Liu X C et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium[J]. OSA Continuum, 2, 703-714(2019).

    [105] Mididoddi C K, Lennon R A, Li S H et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration[J]. Optics Express, 28, 34692-34705(2020).

    [106] Liang H P, Li T J, Luo J W et al. Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light[J]. Optics Express, 31, 18365-18378(2023).

    [107] McDowell E J, Cui M, Vellekoop I M et al. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 15, 025004(2010).

    [108] Lai P X, Xu X, Liu H L et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 16, 080505(2011).

    [109] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [110] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).

    [111] Jayet B, Huignard J P, Ramaz F. Optical phase conjugation in Nd∶YVO4 for acousto-optic detection in scattering media[J]. Optics Letters, 38, 1256-1258(2013).

    [112] Blochet B, Bourdieu L, Gigan S. Focusing light through dynamical samples using fast continuous wavefront optimization[J]. Optics Letters, 42, 4994-4997(2017).

    [113] Horstmeyer R, Ruan H W, Yang C H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).

    [114] Vellekoop I M, van Putten E G, Lagendijk A et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 16, 67-80(2008).

    [115] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers[J]. Optics Letters, 35, 1245-1247(2010).

    [116] Hsieh C L, Pu Y, Grange R et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 18, 12283-12290(2010).

    [117] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).

    [118] Yu Z P, Huangfu J T, Zhao F Y et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 2927(2018).

    [119] Ruan H W, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 6, 8968(2015).

    [120] Yang J M, Li L, Shemetov A A et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star[J]. Science Advances, 5, eaay1211(2019).

    [121] Ma C, Xu X, Liu Y et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 8, 931-936(2014).

    [122] Zhou E H, Ruan H W, Yang C et al. Focusing on moving targets through scattering samples[J]. Optica, 1, 227-232(2014).

    [123] Wang Y M, Judkewitz B, Dimarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).

    [124] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).

    [125] Ruan H W, Jang M, Judkewitz B et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode[J]. Scientific Reports, 4, 7156(2014).

    [126] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2, 748(2012).

    [127] Aizik D, Gkioulekas I, Levin A. Fluorescent wavefront shaping using incoherent iterative phase conjugation[J]. Optica, 9, 746-754(2022).

    [128] Suzuki Y, Tay J W, Yang Q et al. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 39, 3441-3444(2014).

    [129] Judkewitz B, Wang Y M, Horstmeyer R et al. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 7, 300-305(2013).

    [130] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).

    [131] Caravaca-Aguirre A M, Niv E, Conkey D B et al. Real-time resilient focusing through a bending multimode fiber[J]. Optics Express, 21, 12881-12887(2013).

    [132] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).

    [133] Inzunza-Ibarra M A, Premillieu E, Grünsteidl C et al. Sub-acoustic resolution optical focusing through scattering using photoacoustic fluctuation guided wavefront shaping[J]. Optics Express, 28, 9823-9832(2020).

    [134] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).

    [135] Zhao T R, Ourselin S, Vercauteren T et al. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media[J]. Optics Letters, 46, 1165-1168(2021).

    [136] Luo J W, Wu D X, Liu Y et al. Single-exposure ultrasound-modulated optical tomography with a quaternary phase encoded mask[J]. Optics Letters, 48, 2857-2860(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yuecheng Shen, Jiawei Luo, Zhiling Zhang, Shian Zhang. Wavefront Shaping Methods for Scattering Light Field Regulation and Its Imaging Application (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Nov. 8, 2023

    Accepted: Dec. 21, 2023

    Published Online: May. 6, 2024

    The Author Email: Zhang Shian (sazhang@phy.ecnu.edu.cn)

    DOI:10.3788/AOS231769

    CSTR:32393.14.AOS231769

    Topics