Acta Optica Sinica, Volume. 44, Issue 10, 1026016(2024)
Wavefront Shaping Methods for Scattering Light Field Regulation and Its Imaging Application (Invited)
[1] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).
[2] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[3] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).
[4] Chance B, Kang K, He L et al. Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions[J]. Proceedings of the National Academy of Sciences, 90, 3423-3427(1993).
[5] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 101, 120601(2008).
[6] Choi W, Mosk A P, Park Q H et al. Transmission eigenchannels in a disordered medium[J]. Physical Review B, 83, 134207(2011).
[7] Chong Y D, Stone A D. Hidden black: coherent enhancement of absorption in strongly scattering media[J]. Physical Review Letters, 107, 163901(2011).
[8] Goetschy A, Stone A D. Filtering random matrices: the effect of incomplete channel control in multiple scattering[J]. Physical Review Letters, 111, 063901(2013).
[9] Liew S F, Popoff S M, Mosk A P et al. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport[J]. Physical Review B, 89, 224202(2014).
[10] Popoff S M, Goetschy A, Liew S F et al. Coherent control of total transmission of light through disordered media[J]. Physical Review Letters, 112, 133903(2014).
[11] Kim M, Choi W, Yoon C Y et al. Exploring anti-reflection modes in disordered media[J]. Optics Express, 23, 12740-12749(2015).
[12] Liew S F, Cao H. Modification of light transmission channels by inhomogeneous absorption in random media[J]. Optics Express, 23, 11043-11053(2015).
[13] Hsu C W, Goetschy A, Bromberg Y et al. Broadband coherent enhancement of transmission and absorption in disordered media[J]. Physical Review Letters, 115, 223901(2015).
[14] Yamilov A, Petrenko S, Sarma R et al. Shape dependence of transmission, reflection, and absorption eigenvalue densities in disordered waveguides with dissipation[J]. Physical Review B, 93, 100201(2016).
[15] He Y, Wu D X, Zhang R S et al. Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices[J]. Optics Express, 29, 20353-20369(2021).
[16] Beckwith P H, McMichael I, Yeh P. Image distortion in multimode fibers and restoration by polarization-preserving phase conjugation[J]. Optics Letters, 12, 510-512(1987).
[17] McMichael I, Yeh P, Beckwith P. Correction of polarization and modal scrambling in multimode fibers by phase conjugation[J]. Optics Letters, 12, 507-509(1987).
[18] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[19] Cao R Z, de Goumoens F, Blochet B et al. High-resolution non-line-of-sight imaging employing active focusing[J]. Nature Photonics, 16, 462-468(2022).
[20] Zhu Y M, Zeng T J, Liu K W et al. Full scene underwater imaging with polarization and an untrained network[J]. Optics Express, 29, 41865-41881(2021).
[21] Liu Y, Ma C, Shen Y C et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).
[22] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).
[23] Park J, Park J H, Yu H et al. Focusing through turbid media by polarization modulation[J]. Optics Letters, 40, 1667-1670(2015).
[24] Wang D F, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).
[25] Shen Y C, Liu Y, Ma C et al. Focusing light through scattering media by full-polarization digital optical phase conjugation[J]. Optics Letters, 41, 1130-1133(2016).
[26] Shen Y C, Liu Y, Ma C et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J]. Optica, 4, 97-102(2017).
[27] Yang J M, Shen Y C, Liu Y et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation[J]. Applied Physics Letters, 111, 201108(2017).
[28] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).
[29] Huang H L, Chen Z Y, Sun C Z et al. Light focusing through scattering media by particle swarm optimization[J]. Chinese Physics Letters, 32, 104202(2015).
[30] Fang L J, Zuo H Y, Yang Z G et al. Particle swarm optimization to focus coherent light through disordered media[J]. Applied Physics B, 124, 155(2018).
[31] Fang L J, Zhang X C, Zuo H Y et al. Focusing light through random scattering media by four-element division algorithm[J]. Optics Communications, 407, 301-310(2018).
[32] Wu Y L, Zhang X D, Yan H M. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping[J]. Optik, 158, 558-564(2018).
[33] Wu Z H, Luo J W, Feng Y H et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm[J]. Optics Express, 27, 5570-5580(2019).
[34] Wu D X, Qin L X, Luo J W et al. Delivering targeted color light through a multimode fiber by field synthesis[J]. Optics Express, 28, 19700-19710(2020).
[35] Zhao Y Y, He Q Z, Li S N et al. Gradient-assisted focusing light through scattering media[J]. Optics Letters, 46, 1518-1521(2021).
[36] Woo C M, Li H H, Zhao Q et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping[J]. Optics Express, 29, 18420-18426(2021).
[37] Luo J W, Wu Z H, Wu D X et al. Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping[J]. Optics Letters, 44, 4067-4070(2019).
[38] Wu D X, Luo J W, Li Z H et al. A thorough study on genetic algorithms in feedback-based wavefront shaping[J]. Journal of Innovative Optical Health Sciences, 12, 1942004(2019).
[39] Luo J W, Liang J J, Wu D X et al. Simultaneous dual-channel data transmission through a multimode fiber via wavefront shaping[J]. Applied Physics Letters, 123, 151106(2023).
[40] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).
[41] Yang Z G, Fang L J, Zhang X C et al. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm[J]. Optics and Lasers in Engineering, 144, 106646(2021).
[42] Li H H, Woo C M, Zhong T T et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 9, 202-212(2021).
[43] Conkey D B, Caravaca-Aguirre A M, Dove J D et al. Super-resolution photoacoustic imaging through a scattering wall[J]. Nature Communications, 6, 7902(2015).
[44] Osnabrugge G, Horstmeyer R, Papadopoulos I N et al. Generalized optical memory effect[J]. Optica, 4, 886-892(2017).
[45] Liu H L, Liu Z T, Chen M J et al. Physical picture of the optical memory effect[J]. Photonics Research, 7, 1323-1330(2019).
[46] Feng S, Kane C, Lee P A et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).
[47] Schott S, Bertolotti J, Léger J F et al. Characterization of the angular memory effect of scattered light in biological tissues[J]. Optics Express, 23, 13505-13516(2015).
[48] Judkewitz B, Horstmeyer R, Vellekoop I M et al. Translation correlations in anisotropically scattering media[J]. Nature Physics, 11, 684-689(2015).
[49] Wang C, Ji N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics[J]. Optics Express, 21, 27142-27154(2013).
[50] Amitonova L V, Mosk A P, Pinkse P W H. Rotational memory effect of a multimode fiber[J]. Optics Express, 23, 20569-20575(2015).
[51] Ma C J, Di J L, Li Y et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation[J]. Applied Physics Express, 11, 062501(2018).
[52] Wei X M, Shen Y C, Jing J C et al. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb[J]. Science Advances, 6, eaay1192(2020).
[53] Zhu L D, de Monvel J B, Berto P et al. Chromato-axial memory effect through a forward-scattering slab[J]. Optica, 7, 338-345(2020).
[54] Zhang R S, Du J Y, He Y et al. Characterization of the spectral memory effect of scattering media[J]. Optics Express, 29, 26944-26954(2021).
[55] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[56] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[57] Xu J, Ruan H W, Liu Y et al. Focusing light through scattering media by transmission matrix inversion[J]. Optics Express, 25, 27234-27246(2017).
[58] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).
[59] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).
[60] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).
[61] Drémeau A, Liutkus A, Martina D et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 23, 11898-11911(2015).
[62] N'Gom M, Lien M B, Estakhri N M et al. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method[J]. Scientific Reports, 7, 2518(2017).
[63] N'Gom M, Norris T B, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).
[64] Deng L, Yan J D, Elson D S et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system[J]. Optics Express, 26, 18436-18447(2018).
[65] Zhao T R, Deng L, Wang W et al. Bayes' theorem-based binary algorithm for fast reference-less calibration of a multimode fiber[J]. Optics Express, 26, 20368-20378(2018).
[66] Huang G Q, Wu D X, Luo J W et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter[J]. Optics Express, 28, 9487-9500(2020).
[67] Huang G Q, Wu D X, Luo J W et al. Generalizing the Gerchberg-Saxton algorithm for retrieving complex optical transmission matrices[J]. Photonics Research, 9, 34-42(2020).
[68] Wang Z Y, Wu D X, Huang G Q et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system[J]. Optics Letters, 46, 5542-5545(2021).
[69] Ancora D, Dominici L, Gianfrate A et al. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg-Saxton single-iteration algorithm[J]. Photonics Research, 10, 2349-2358(2022).
[70] Wu D X, Luo J W, Lu Z B et al. Two-stage matrix-assisted glare suppression at a large scale[J]. Photonics Research, 10, 2693-2701(2022).
[71] Wu D X, Wang Z Y, Wang J et al. Probabilistic phase shaping guided wavefront control of complex media with information-limited intensity measurements[J]. Laser & Photonics Reviews, 17, 2300110(2023).
[72] Moon J, Cho Y C, Kang S et al. Measuring the scattering tensor of a disordered nonlinear medium[J]. Nature Physics, 19, 1709-1718(2023).
[73] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).
[74] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).
[75] Rahmani B, Loterie D, Konstantinou G et al. Multimode optical fiber transmission with a deep learning network[J]. Light, Science & Applications, 7, 69(2018).
[76] Zhang L H, Xu R C, Ye H L et al. High definition images transmission through single multimode fiber using deep learning and simulation speckles[J]. Optics and Lasers in Engineering, 140, 106531(2021).
[77] Zhu C Y, Chan E A, Wang Y et al. Image reconstruction through a multimode fiber with a simple neural network architecture[J]. Scientific Reports, 11, 896(2021).
[78] Tang P S, Zheng K P, Yuan W M et al. Learning to transmit images through optical speckle of a multimode fiber with high fidelity[J]. Applied Physics Letters, 121, 081107(2022).
[79] Liu Y F, Zhang Z S, Yu P P et al. Learning-enabled recovering scattered data from twisted light transmitted through a long standard multimode fiber[J]. Applied Physics Letters, 120, 131101(2022).
[80] Fan P F, Zhao T R, Su L. Deep learning the high variability and randomness inside multimode fibers[J]. Optics Express, 27, 20241-20258(2019).
[81] Resisi S, Popoff S M, Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning[J]. Laser & Photonics Reviews, 15, 2000553(2021).
[82] Fan P F, Ruddlesden M, Wang Y F et al. Learning enabled continuous transmission of spatially distributed information through multimode fibers[J]. Laser & Photonics Reviews, 15, 2000348(2021).
[83] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 26, 30911-30929(2018).
[84] Rahmani B, Loterie D, Kakkava E et al. Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media[J]. Nature Machine Intelligence, 2, 403-410(2020).
[85] Xiang C C, Xiao Y S, Dai Y et al. Controlling light focusing through scattering medium with superpixel-based deep learning method[J]. Optik, 262, 169277(2022).
[86] Wang J, Zhong G C, Wu D X et al. Multimode fiber-based greyscale image projector enabled by neural networks with high generalization ability[J]. Optics Express, 31, 4839-4850(2023).
[87] Huang S T, Wang J, Wu D X et al. Projecting colorful images through scattering media via deep learning[J]. Optics Express, 31, 36745-36753(2023).
[88] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light, Science & Applications, 9, 149(2020).
[89] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).
[90] Feng B Y, Guo H Y, Xie M Y et al. NeuWS: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media[J]. Science Advances, 9, eadg4671(2023).
[91] Shen Y C, Liu Y, Ma C et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 21, 085001(2016).
[92] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[93] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).
[94] Hsieh C L, Pu Y, Grange R et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 18, 20723-20731(2010).
[95] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).
[96] Hillman T R, Yamauchi T, Choi W et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media[J]. Scientific Reports, 3, 1909(2013).
[97] Liu Y, Ma C, Shen Y C et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Optics Letters, 41, 1321-1324(2016).
[98] Hemphill A S, Shen Y C, Liu Y et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Applied Physics Letters, 111, 221109(2017).
[99] Liu Y, Shen Y C, Ruan H W et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 23, 010501(2018).
[100] Luo J W, Liu Y, Wu D X et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering[J]. Science Advances, 8, eadd9158(2022).
[101] Jang M, Ruan H W, Zhou H J et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 22, 14054-14071(2014).
[102] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials[J]. Applied Optics, 55, 2873-2880(2016).
[103] Hemphill A S, Shen Y C, Hwang J et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials[J]. Journal of Biomedical Optics, 24, 031004(2018).
[104] Yu Y W, Sun C C, Liu X C et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium[J]. OSA Continuum, 2, 703-714(2019).
[105] Mididoddi C K, Lennon R A, Li S H et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration[J]. Optics Express, 28, 34692-34705(2020).
[106] Liang H P, Li T J, Luo J W et al. Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light[J]. Optics Express, 31, 18365-18378(2023).
[107] McDowell E J, Cui M, Vellekoop I M et al. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 15, 025004(2010).
[108] Lai P X, Xu X, Liu H L et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 16, 080505(2011).
[109] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).
[110] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).
[111] Jayet B, Huignard J P, Ramaz F. Optical phase conjugation in Nd∶YVO4 for acousto-optic detection in scattering media[J]. Optics Letters, 38, 1256-1258(2013).
[112] Blochet B, Bourdieu L, Gigan S. Focusing light through dynamical samples using fast continuous wavefront optimization[J]. Optics Letters, 42, 4994-4997(2017).
[113] Horstmeyer R, Ruan H W, Yang C H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).
[114] Vellekoop I M, van Putten E G, Lagendijk A et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 16, 67-80(2008).
[115] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers[J]. Optics Letters, 35, 1245-1247(2010).
[116] Hsieh C L, Pu Y, Grange R et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 18, 12283-12290(2010).
[117] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).
[118] Yu Z P, Huangfu J T, Zhao F Y et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 2927(2018).
[119] Ruan H W, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 6, 8968(2015).
[120] Yang J M, Li L, Shemetov A A et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star[J]. Science Advances, 5, eaay1211(2019).
[121] Ma C, Xu X, Liu Y et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 8, 931-936(2014).
[122] Zhou E H, Ruan H W, Yang C et al. Focusing on moving targets through scattering samples[J]. Optica, 1, 227-232(2014).
[123] Wang Y M, Judkewitz B, Dimarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).
[124] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).
[125] Ruan H W, Jang M, Judkewitz B et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode[J]. Scientific Reports, 4, 7156(2014).
[126] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2, 748(2012).
[127] Aizik D, Gkioulekas I, Levin A. Fluorescent wavefront shaping using incoherent iterative phase conjugation[J]. Optica, 9, 746-754(2022).
[128] Suzuki Y, Tay J W, Yang Q et al. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 39, 3441-3444(2014).
[129] Judkewitz B, Wang Y M, Horstmeyer R et al. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 7, 300-305(2013).
[130] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).
[131] Caravaca-Aguirre A M, Niv E, Conkey D B et al. Real-time resilient focusing through a bending multimode fiber[J]. Optics Express, 21, 12881-12887(2013).
[132] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).
[133] Inzunza-Ibarra M A, Premillieu E, Grünsteidl C et al. Sub-acoustic resolution optical focusing through scattering using photoacoustic fluctuation guided wavefront shaping[J]. Optics Express, 28, 9823-9832(2020).
[134] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).
[135] Zhao T R, Ourselin S, Vercauteren T et al. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media[J]. Optics Letters, 46, 1165-1168(2021).
[136] Luo J W, Wu D X, Liu Y et al. Single-exposure ultrasound-modulated optical tomography with a quaternary phase encoded mask[J]. Optics Letters, 48, 2857-2860(2023).
Get Citation
Copy Citation Text
Yuecheng Shen, Jiawei Luo, Zhiling Zhang, Shian Zhang. Wavefront Shaping Methods for Scattering Light Field Regulation and Its Imaging Application (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026016
Category: Physical Optics
Received: Nov. 8, 2023
Accepted: Dec. 21, 2023
Published Online: May. 6, 2024
The Author Email: Zhang Shian (sazhang@phy.ecnu.edu.cn)
CSTR:32393.14.AOS231769