Laser & Optoelectronics Progress, Volume. 51, Issue 12, 120002(2014)
Research Progress on Overcoming the Atmospheric Turbulence Effect in Satellite-to-Ground Laser Communication
[1] [1] Chan, Vincent W S. Space coherent optical communication systems-an introduction[J]. J Lightwave Technol, 1987, 5(4): 633-637.
[2] [2] V W Chan. Optical satellite networks[J]. J Lightwave Technol, 2003, 21(11): 2811-2827.
[3] [3] A Panahi, A A Kazemi. High speed laser communication network for satellite systems[C]. SPIE, 2011, 8026:80260L.
[4] [4] R G Marshalek, G S Mecherle, P Jordan. System-level comparison of optical and RF technologies for space-to-space and space-to-ground communication links circa 2000[C]. Photonics West′96, 1996. 134-145.
[5] [5] T Tolker-Nielsen, G Oppenhauser. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]. SPIE, 2002. 4635: 1-15.
[6] [6] T Tolker-Nielsen, J Guillen. SILEX: the first european optical communication terminal in orbit[J]. ESA bulletin, 1998, 96(1): 998.
[7] [7] Liu Liren. Satellite laser communication is reviewed[J]. Science, 2007, 59(3): 29-33.
[10] [10] Li Xiaofeng. The Principle and Technology of the Satellite-to-Ground Laser Communication Links[M]. Beijing: National Defence Industry Press, 2007. 121-159.
[11] [11] Xia Yun. Performance Analysis for Space-to-ground Optical Communication System with Existence of Atmospheric Turbulence[D]. Hangzhou: Zhejiang University, 2007.
[12] [12] Miller, P Zieske. Characterization of atmospheric turbulence[C]. SPIE, 1976,0075:30-38.
[13] [13] J C Ricklin, F M Davidson. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. J Opt Soc Am A, 2002, 19(9): 1794-1802.
[14] [14] L C Andrews, R L Phillips. Laser Beam Propagation Through Random Media[M]. Bellingham: SPIE Press, 2005.
[15] [15] Wu Huiyun, Chen Jinbao, Sun Zhenhai. Analysis of beam propagation through a relay mirror system in turbulent atmosphere[J]. Chinese J Lasers, 2013, 40(2): 0213001.
[16] [16] L C Andrews, R L Phillips, R J Sasiela. Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects[J]. Opt Eng, 2006, 45(7): 076001.
[17] [17] J Recolons, L C Andrews, R L Phillips. Analysis of beam wander effects for a horizontal-path propagating Gaussianbeam wave: focused beam case[J]. Opt Engng, 2007, 46(8): 086002.
[18] [18] A Ishimaru. Wave Propagation and Scattering in Random Media[M]. New York: Academic Press, 1978.
[19] [19] G Wang. A new random-phase-screen time series simulation algorithm for dynamically atmospheric turbulence wavefront generator[C]. SPIE, 2006, 6027: 602716.
[20] [20] Rao Ruizhong. Light Propagation in the Turbulent Atmosphere[M]. Hefei:Anhui Science and Technology Press, 2005. 307-335.
[21] [21] Walter P Cole, Michael A Marciniak, Mitchell B Haeri. Atmospheric-turbulence-effects correction factors for the laser range equation[J]. Opt Engng, 2008, 47(12): 126001.
[22] [22] Jose Paulo G de Oliveira. Availability of free-space optical communication systems under influence of beam wandering and optical turbulence[C]. SPIE, 2009, 7324: 732406.
[23] [23] Z Sodnik, J P Armengol, R Czichy. Adaptive optics and ESA′s optical ground station[C]. SPIE, 2009, 7464: 746406.
[24] [24] R Fields, D Kozlowski, H Yura, et al.. 5.625 Gb/s bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[C]. SPIE, 2011, 8184: 81840D.
[25] [25] R Tyson. Principles of Adaptive Optics[M]. Florida: CRC Press, 2010.
[26] [26] Devaney N, Dalimier E, Farrell T, et al.. Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors[J]. Appl Opt, 2008, 47(35): 6550-6562.
[27] [27] Wu Huiyun, Chen Jinbao, Sun Zhenhai. Analysis of beam propagation through a relay mirror system in turbulent atmosphere[J]. Chinese J Lasers, 2013, 40(2): 0213001.
[28] [28] R H Czichy, Z Sodnik, B Furch. Design of an optical ground station for in-orbit checkout of free-space laser communication payloads[C]. Photonics West′95, 1995. 26-37.
[30] [30] Tang Weijie, Fu Lei, Chen Shufen, et al.. Realization of measuring micro-vibration based on phase generated carrier modulation-demodulation method and interference analysis[J]. Chinese J Lasers, 2013, 40(2): 0214001.
[31] [31] R B Garreis. 90 degree optical hybrid for coherent receivers[C]. Munich′91 (Lasers′91), 1991. 210-219.
[32] [32] M Gregory, F Heine, H Kampfner, et al.. Inter-satellite and satellite-ground laser communication links based on homodyne BPSK[C]. SPIE, 2010, 7587: 75870E.
[33] [33] L Allen, M W Beijersbergen, R J C Spreeuw, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(1): 8185.
[34] [34] Jian Wang, Jeng-Yuan Yang, Irfan M Fazal, et al.. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photon, 2012, 6(7): 488-496.
[35] [35] Ivan B. Djordjevic and Murat Arabaci. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Opt Express, 2010, 18(24): 24722-24728.
[36] [36] Zhao S, Wang B, Zhou L, et al.. Turbulence mitigation scheme for optical communications using orbital angular momentum multiplexing based on channel coding and wavefront correction[J]. arXiv preprint arXiv: 1401. 7558. 2014.
[37] [37] A Gnauck, P J Winzer. Optical phase-shift-keyed transmission[J]. J Lightwave Technol, 2005, 23(1): 115-130.
[38] [38] Ma Xiaoping, Sun Jianfeng, Zhi Yanan, et al.. Research of DPSK modulation and self-differential homodyne coherent detection technology to overcome atmospheric turbulence effect in the satellite-to-ground laser communication[J]. Acta Optica Sinica, 2013, 33(7): 0706017.
[39] [39] Z Sodnik, M Sans. Extending EDRS to laser communication from space to ground[J]. Proc. of ICSOS, 2012. 13-2.
[41] [41] Zhi Ya′ nan, Sun Jianfeng, Dai Enwen, et al.. High-data rate differential phase shift keying receiver for satellite-toground optical communication link[C]. SPIE, 2012, 8517: 85170F.
[42] [42] Sun Jianfeng, Lu Wei, Wang Lijuan, et al.. High-data rate laser communication field experiment in the turbulence channel[C]. SPIE, 2012, 8517: 851713.
[44] [44] Luan Zhu, Zhou Yu, Zhi Ya′ nan, et al.. An aperture-matched phase-compensated differential phase shift keying receiver with a 90° hybrid[C]. SPIE, 2011, 8162: 81620O.
Get Citation
Copy Citation Text
Ma Xiaoping, Sun Jianfeng, Hou Peipei, Xu Qian, Zhi Yanan, Liu Liren. Research Progress on Overcoming the Atmospheric Turbulence Effect in Satellite-to-Ground Laser Communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002
Category: Reviews
Received: Apr. 14, 2014
Accepted: --
Published Online: Dec. 2, 2014
The Author Email: Ma Xiaoping (maxiaoping@siom.ac.cn)