Journal of Beijing Normal University, Volume. 61, Issue 3, 394(2025)

Research on Prediction Model of Neolithic Archaeological Sites in Shandong Province Based on GIS and XGBoost Algorithm

TIAN Jie1, ZHU Youchen1, LI Linzhi1、*, ZHU Xing2, LI Wenran3, and AN Xuelian1
Author Affiliations
  • 1GIS Application Research Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing, China
  • 2National Key Laboratory for Geohazard Prevention and Geological Environment Protection, Chengdu University of Technology, Chengdu, Sichuan, China
  • 3Supply and Environment Technology Co., Ltd., Beijing, China
  • show less
    References(28)

    [3] [3] WILLEY G R. Prehistoric Settlement Patterns in the Vir Valley, Per[J]. American Antiquity, 1955, 20: 297

    [4] [4] KVAMME K. Computer processing techniques for regional modeling of archaeological site locations[C/OL]. [2024-12-13]. https://www.semanticscholar.org/paper/Computer-processing-techniques-for-regional-of-site-Kvamme/826cd4f223dfcd3b318a0a4f380123fff35ee58b

    [5] [5] KOOHPAYMA J, MAKKI M, LENTSCHKE J, et al. Predicting potential locations of ancient settlements using GIS and Weights-Of-Evidence method (case study: North-East of Iran)[J]. Journal of Archaeological Science: Reports, 2021, 40: 103229

    [6] [6] ESPA G, BENEDETTI R, DE MEO A, et al. GIS based models and estimation methods for the probability of archaeological site location[J]. Journal of Cultural Heritage, 2006, 7(3): 147

    [11] [11] LIESKOVSK T, DURAIOV R. Selected mathematical principles of archaeological predictive models creation and validation in the GIS environment[J]. Interdisciplinaria Archaeologica: Natural Sciences in Archaeology, 2013, IV(2/2013): 177

    [12] [12] KAMERMANS H, LEUSEN M V, VERHAGEN P. Archaeological prediction and risk management: alternatives to current practice[M]. Leiden, the Netherlands: Leiden University Press, 2009

    [13] [13] BALLA A, PAVLOGEORGATOS G, TSIAFAKIS D, et al. Recent advances in archaeological predictive modeling for archaeological research and cultural heritage management[J]. Mediterranean Archaeology and Archaeometry, 2014, 14(4): 143.

    [14] [14] STANCIC Z, VELJANOVSKI T. Predictive modeling in archaeological location analysis and archaeological resource management: principles and applications[C/OL]//Mehrer M, Wescott K. Gis and Archaeological Site Location Modeling CRC Press, 2005[2024-12-13]. http://www.crcnetbase.com/doi/10.1201/9780203563359.ch18

    [15] [15] NSANZIYERA A F, RHINANE H, OUJAA A, et al. GIS and remote-sensing application in archaeological site mapping in the awsard area (Morocco)[J]. Geosciences, 2018, 8(6): 207

    [16] [16] SCHMIDT A, DABAS M, SARRIS A. Dreaming of perfect data: characterizing noise in archaeo-geophysical measurements[J]. Geosciences, 2020, 10(10): 382

    [17] [17] MIAO J C, WU Y X, SUN Z X, et al. Valid inference for machine learning-assisted genome-wide association studies[J]. Nature Genetics, 2024, 56(11): 2361

    [18] [18] PETEANI G, HUYNH M T D, GEREBTZOFF G, et al. Application of machine learning models for property prediction to targeted protein degraders[J]. Nature Communications, 2024, 15(1): 5764

    [21] [21] DAVIS D S. Defining what we study: the contribution of machine automation in archaeological research[J]. Digital Applications in Archaeology and Cultural Heritage, 2020, 18: e00152

    [22] [22] CASPARI G, CRESPO P. Convolutional neural networks for archaeological site detection–Finding “princely” tombs[J]. Journal of Archaeological Science, 2019, 110: 104998

    [23] [23] PEREIRA A C, CREMON H, DA SILVA R T, et al. Predictive modeling in geoarchaeology: an evaluation of machine learning algorithms and topographic variables on the Serranpolis City - Brazil[J]. Digital Applications in Archaeology and Cultural Heritage, 2024, 34: e00350

    [25] [25] LI L Z, LI Y J, CHEN X Y, et al. A prediction study on archaeological sites based on geographical variables and logistic regression: a case study of the Neolithic Era and the Bronze Age of Xiangyang[J]. Sustainability, 2022, 14(23): 15675

    [26] [26] ZHANG W G, WU C Z, TANG L B, et al. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms[J]. Gondwana Research, 2023, 123: 41

    [28] [28] CHEN T D, WEI W, JIAO J Y, et al. Machine learning-based identification for the main influencing factors of alluvial fan development in the Lhasa River basin, Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2022, 32(8): 1557

    [44] [44] LI L Z, CHEN X Y, SUN D L, et al. A prediction model for Xiangyang Neolithic sites based on a random forest algorithm[J]. Open Geosciences, 2023, 15(1): 20220467

    [48] [48] ZHU X, CHU J, WANG K D, et al. Prediction of rockhead using a hybrid N-XGBoost machine learning framework[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6): 1231

    [49] [49] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81

    [50] [50] ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization[J]. The Annals of Statistics, 2004, 32(1): 56

    [51] [51] SILLERO N, ARENAS-CASTRO S, ENRIQUEZ-URZELAI U, et al. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling[J]. Ecological Modelling, 2021, 456: 109671

    [52] [52] LIU C R, WHITE M, NEWELL G. Selecting thresholds for the prediction of species occurrence with presence-only data[J]. Journal of Biogeography, 2013, 40(4): 778

    [53] [53] MDHARRIS. Part 1: Youden'sJas a replacement for the Kvamme Gain metric in the evaluation of archaeological predictive models[EB/OL]. (2018-04-16) [2024-12-26]. https://matthewdharris.com/2018/04/16/part-1-youdens-j-as-a-replacement-for-the-kvamme-gain-metric-in-the-evaluation-of-archaeological-predictive-models/

    [55] [55] CONOVER W J. Practical nonparametric statistics[M/OL]. [2024-12-27]. http://library.um.ac.id/free-contents/index.php/buku/detail/practical-nonparametric-statistics-by-w-j-conover-13670.html

    [56] [56] GHASEMI A, ZAHEDIASL S. Normality tests for statistical analysis: a guide for non-statisticians[J]. International Journal of Endocrinology and Metabolism, 2012, 10(2): 486

    [57] [57] VERHAGEN P, WHITLEY T G. Integrating archaeological theory and predictive modeling: a live report from the scene[J]. Journal of Archaeological Method and Theory, 2012, 19(1): 49

    Tools

    Get Citation

    Copy Citation Text

    TIAN Jie, ZHU Youchen, LI Linzhi, ZHU Xing, LI Wenran, AN Xuelian. Research on Prediction Model of Neolithic Archaeological Sites in Shandong Province Based on GIS and XGBoost Algorithm[J]. Journal of Beijing Normal University, 2025, 61(3): 394

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 15, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email: LI Linzhi (sclilinzhi@163.com)

    DOI:10.12202/j.0476-0301.2024241

    Topics