Laser & Optoelectronics Progress, Volume. 57, Issue 8, 081504(2020)

Stereo Matching by Improved Window Characteristics and Differential Operators

Xinchun Li1, Xinyong Yin1、*, and Sen Lin1,2,3
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • show less
    References(20)

    [1] Mayer N, Ilg E, Hausser P et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, LasVegas, NV, USA. New York: IEEE, 4040-4048(2016).

    [2] Kendall A, Martirosyan H, Dasgupta S et al. End-to-end learning of geometry and context for deep stereo regression. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 66-75(2017).

    [3] Chang J R, Chen Y S. Pyramid stereo matching network. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 5410-5418(2018).

    [6] Zhang Y, Khamis S, Rhemann C et al. Active Stereo Net: end-to-end self-supervised learning for active stereo systems. [C]∥Proceedings of the European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. New York: IEEE, 784-801(2018).

    [7] Žbontar J. LeCun Y. Computing the stereo matching cost with a convolutional neural network. [C]∥Proceedings of the IEEE conference on computer vision and pattern recognition, June 7-12, 2015, Boston, USA. New York: IEEE, 1592-1599(2015).

    [9] Spyropoulos A, Komodakis N, Mordohai P. Learning to detect ground control points for improving the accuracy of stereo matching. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, Ohio. New York: IEEE, 1621-1628(2014).

    [10] Taniai T, Matsushita Y, Naemura T. Graph cut based continuous stereo matching using locally shared labels. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, Ohio. New York: IEEE, 1613-1620(2014).

    [11] Sinha S N, Scharstein D, Szeliski R. Efficient high-resolution stereo matching using local plane sweeps. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, Ohio. New York: IEEE, 1582-1589(2014).

    [12] Zhang K, Fang Y, Min D et al. Cross-scale cost aggregation for stereo matching. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, Ohio. New York: IEEE, 1590-1597(2014).

    [13] Pang J, Sun W, Yang C et al. Zoom and learn: generalizing deep stereo matching to novel domains. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Salt Lake City, Utah. New York: IEEE, 2070-2079(2018).

    [14] Tonioni A, Tosi F, Poggi M et al. Real-time self-adaptive deep stereo. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. New York: IEEE, 195-204(2019).

    [15] Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching[M]. ∥Kimmel R, Klette R, Sugimoto A. Computer vision-ACCV 2010. Lecture notes in computer science. Heidelberg: Springer, 6492, 25-38(2010).

    [16] Wu P L, Li Y N, Yang F et al. A CLM-based method of indoor affordance areas classification for service robots[J]. Robot, 40, 188-194(2018).

    [18] Scharstein D, Szeliski R. -10-15)[2019-08-26]. http:∥vision.middlebury.edu/stereo/.(2014).

    [19] Guo X, Yang K, Yang W et al. Group-wise correlation stereo network. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. New York: IEEE, 3273-3282(2019).

    [20] Zhang F, Prisacariu V, Yang R et al. GA-Net: guided aggregation net for end-to-end stereo matching. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. New York: IEEE, 185-194(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xinchun Li, Xinyong Yin, Sen Lin. Stereo Matching by Improved Window Characteristics and Differential Operators[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 29, 2019

    Accepted: Sep. 24, 2019

    Published Online: Apr. 3, 2020

    The Author Email: Xinyong Yin (xin-yong.yin@outlook.com)

    DOI:10.3788/LOP57.081504

    Topics