High Power Laser and Particle Beams, Volume. 34, Issue 8, 081003(2022)

Application of liquid film targets in laser-driven radiation sources and laser ion acceleration

Ziyang Peng1,2, Zhengxuan Cao1,2, Ying Gao1,2, Shiyou Chen1,2, Jiarui Zhao1,2, and Wenjun Ma1,2、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2Beijing Laser Acceleration Innovation Center, Beijing 101407, China
  • show less
    References(76)

    [1] Hasson D, Peck R E. Thickness distribution in a sheet formed by impinging jets[J]. AIChE Journal, 10, 752-754(1964).

    [2] Watanabe A, Saito H, Ishida Y, et al. A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers[J]. Optics Communications, 71, 301-304(1989).

    [3] Ekimova M, Quevedo W, Faubel M, et al. A liquid flatjet system for solution phase soft-X-ray spectroscopy[J]. Structural Dynamics, 2, 054301(2015).

    [4] Koralek J D, Kim J B, Brůža P, et al. Generation and characterization of ultrathin free-flowing liquid sheets[J]. Nature Communications, 9, 1353(2018).

    [5] Nunes J P F, Ledbetter K, Lin M, et al. Liquid-phase mega-electron-volt ultrafast electron diffraction[J]. Structural Dynamics, 7, 024301(2020).

    [6] Loh Z H, Doumy G, Arnold C, et al. Observation of the fastest chemical processes in the radiolysis of water[J]. Science, 367, 179-182(2020).

    [7] Smith A D, Balčiu̅nas T, Chang Y P, et al. Femtosecond soft-X-ray absorption spectroscopy of liquids with a water-window high-harmonic source[J]. The Journal of Physical Chemistry Letters, 11, 1981-1988(2020).

    [8] Yang Jie, Dettori R, Nunes J P F, et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water[J]. Nature, 596, 531-535(2021).

    [9] Lin M F, Singh N, Liang S, et al. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water[J]. Science, 374, 92-95(2021).

    [10] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 85, 1-48(2013).

    [11] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 7, 867-871(2011).

    [12] Ma Wenjun, Liu Zhipeng, Wang Pengjie, . Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 70, 084102(2021).

    [13] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 75, 056401(2012).

    [14] Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 9, 3249(2019).

    [15] Savart F. Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire[J]. Ann de Chim, 54, 56-87(1833).

    [16] Taylor G I. The dynamics of thin-sheets of fluid. I. Water bells[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 253, 289-295(1959).

    [17] Bush J W M, Hasha A E. On the collision of laminar jets: fluid chains and fishbones[J]. Journal of Fluid Mechanics, 511, 285-310(2004).

    [18] Li Ri, Ashgriz N. Characteristics of liquid sheets formed by two impinging jets[J]. Physics of Fluids, 18, 087104(2006).

    [19] Choo Y J, Kang B S. The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets[J]. Physics of Fluids, 19, 112101(2007).

    [20] Yang Lijun, Zhao Fei, Fu Qingfei, et al. Liquid sheet formed by impingement of two viscous jets[J]. Journal of Propulsion and Power, 30, 1016-1026(2014).

    [21] Chen Xiaodong, Yang V. Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomization[J]. Chinese Journal of Aeronautics, 32, 45-57(2019).

    [22] Lu Jiakai, Corvalan C M. Influence of viscosity on the impingement of laminar liquid jets[J]. Chemical Engineering Science, 119, 182-186(2014).

    [23] Panão M R O, Delgado J M D. Effect of pre-impingement length and misalignment in the hydrodynamics of multijet impingement atomization[J]. Physics of Fluids, 25, 012105(2013).

    [24] Kashanj S, Kebriaee A. The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets[J]. Chemical Engineering Science, 206, 235-248(2019).

    [25] Morrison J T, Feister S, Frische K D, et al. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction[J]. New Journal of Physics, 20, 022001(2018).

    [26] Baber R, Mazzei L, Thanh N T K, et al. Synthesis of silver nanoparticles using a microfluidic impinging jet reactor[J]. Journal of Flow Chemistry, 6, 268-278(2016).

    [27] Pal S, Madane K, Kulkarni A A. Antisolvent based precipitation: batch, capillary flow reactor and impinging jet reactor[J]. Chemical Engineering Journal, 369, 1161-1171(2019).

    [28] Hafezi M, Mozaffarian M, Jafarikojour M, et al. Application of impinging jet atomization in UV/H2O2 reactor operation: design, evaluation, and optimization[J]. Journal of Photochemistry and Photobiology A: Chemistry, 389, 112198(2020).

    [29] Dombrowski N, Fraser R P. A photographic investigation into the disintegration of liquid sheets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 247, 101-130(1954).

    [30] Galinis G, Strucka J, Barnard J C T, et al. Micrometer-thickness liquid sheet jets flowing in vacuum[J]. Review of Scientific Instruments, 88, 083117(2017).

    [31] Ha B, DePonte D P, Santiago J G. Device design and flow scaling for liquid sheet jets[J]. Physical Review Fluids, 3, 114202(2018).

    [32] Crissman C J, Mo Mianzhen, Chen Zhijiang, et al. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles[J]. Lab on a Chip, 22, 1365-1373(2022).

    [33] Belšak G, Bajt S, Šarler B. Computational modeling and simulation of gas focused liquid micro-sheets[J]. International Journal of Multiphase Flow, 140, 103666(2021).

    [34] Tauber M J, Mathies R A, Chen Xiyi, et al. Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy[J]. Review of Scientific Instruments, 74, 4958-4960(2003).

    [35] Wang Tianwu, Klarskov P, Jepsen P U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film[J]. IEEE Transactions on Terahertz Science and Technology, 4, 425-431(2014).

    [36] Yin Zhong, Luu T T, Wörner H J. Few-cycle high-harmonic generation in liquids: in-operando thickness measurement of flat microjets[J]. Journal of Physics: Photonics, 2, 044007(2020).

    [37] George K M, Morrison J T, Feister S, et al. High-repetition-rate (≥kHz) targets and optics from liquid microjets for high-intensity laser-plasma interactions[J]. High Power Laser Science and Engineering, 7, e50(2019).

    [38] Snyder J, Morrison J, Feister S, et al. Background pressure effects on MeV protons accelerated via relativistically intense laser-plasma interactions[J]. Scientific Reports, 10, 18245(2020).

    [39] Borot A, Malvache A, Chen Xiaowei, et al. Attosecond control of collective electron motion in plasmas[J]. Nature Physics, 8, 416-421(2012).

    [40] Poole P L, Andereck C D, Schumacher D W, et al. Liquid crystal films as on-demand, variable thickness (50−5000 nm) targets for intense lasers[J]. Physics of Plasmas, 21, 063109(2014).

    [41] Noaman-ul-Haq M, Ahmed H, Sokollik T, et al. Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system[J]. Physical Review Accelerators and Beams, 20, 041301(2017).

    [42] Obst L, Göde S, Rehwald M, et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets[J]. Scientific Reports, 7, 10248(2017).

    [43] Liao Guoqian, Li Yutong, Zhang Yihang, et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions[J]. Physical Review Letters, 116, 205003(2016).

    [44] Jin Qi, Yiwen E, Williams K, et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 111, 071103(2017).

    [45] E Yiwen, Jin Qi, Tcypkin A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown[J]. Applied Physics Letters, 113, 181103(2018).

    [46] Jin Qi, Dai Jianming, E Yiwen, et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields[J]. Applied Physics Letters, 113, 261101(2018).

    [47] Tcypkin A N, Ponomareva E A, Putilin S E, et al. Flat liquid jet as a highly efficient source of terahertz radiation[J]. Optics Express, 27, 15485-15494(2019).

    [48] Huang H H, Nagashima T, Hsu W H, et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation[J]. Nanomaterials, 8, 523(2018).

    [49] Huang H H, Nagashima T, Yonezawa T, et al. Giant enhancement of THz wave emission under double-pulse excitation of thin water flow[J]. Applied Sciences, 10, 2031(2020).

    [50] Li Min, Li Zhenyu, Nan Junyi, et al. THz generation from water wedge excited by dual-color pulse[J]. Chinese Optics Letters, 18, 073201(2020).

    [51] Zhao Hang, Tan Yong, Zhang Liangliang, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 9, 136(2020).

    [52] Zhao Hang, Tan Yong, Wu Tong, et al. Strong anisotropy in aqueous salt solutions revealed by terahertz-induced Kerr effect[J]. Optics Communications, 497, 127192(2021).

    [53] Zhao Hang, Tan Yong, Zhang Rui, et al. Anion–water hydrogen bond vibration revealed by the terahertz Kerr effect[J]. Optics Letters, 46, 230-233(2021).

    [54] Ponomareva E A, Tcypkin A N, Smirnov S V, et al. Double-pump technique–one step closer towards efficient liquid-based THz sources[J]. Optics Express, 27, 32855-32862(2019).

    [55] Ponomareva E A, Stumpf S A, Tcypkin A N, et al. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation[J]. Optics Letters, 44, 5485-5488(2019).

    [56] Ponomareva E A, Ismagilov A O, Putilin S E, et al. Varying pre-plasma properties to boost terahertz wave generation in liquids[J]. Communications Physics, 4, 4(2021).

    [57] E Yiwen, Zhang Liangliang, Tsypkin A, et al. Progress, challenges, and opportunities of terahertz emission from liquids[J]. Journal of the Optical Society of America B, 39, A43-A51(2022).

    [58] Dai Chen, Wang Yang, Miao Zhiming, . Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [59] Luu T T, Yin Zhong, Jain A, et al. Extreme-ultraviolet high-harmonic generation in liquids[J]. Nature Communications, 9, 3723(2018).

    [60] Svoboda V, Yin Zhong, Luu T T, et al. Polarization measurements of deep- to extreme-ultraviolet high harmonics generated in liquid flat sheets[J]. Optics Express, 29, 30799-30808(2021).

    [61] [61] Yang Tianqi, Mizuno T, Kurihara T, et al. High harmonics generation in liquid water using a flatjet system[C]Nonlinear Optics 2021. Optical Society of America, 2021: NTh3A. 4.

    [62] [62] Barnard J C T. Xray generation from spectroscopy of a thin liquid sheet[D]. Imperial College London, 2021.

    [63] Zeng Aiwu, Bian Xuebin. Impact of statistical fluctuations on high harmonic generation in liquids[J]. Physical Review Letters, 124, 203901(2020).

    [64] Xia Changlong, Li Zhengliang, Liu Jiaqi, et al. Role of charge-resonance states in liquid high-order harmonic generation[J]. Physical Review A, 105, 013115(2022).

    [65] Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 122, 014803(2019).

    [66] Wang Pengjie, Gong Zheng, Lee S G, et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity[J]. Physical Review X, 11, 021049(2021).

    [67] Zhu J G, Wu M J, Liao Q, et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 22, 061302(2019).

    [68] Yan Xueqing, Lin Chen, Sheng Zhengming, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 100, 135003(2008).

    [69] Gao Ying, Bin Jianhui, Haffa D, et al. An automated, 0.5 Hz nano-foil target positioning system for intense laser plasma experiments[J]. High Power Laser Science and Engineering, 5, e12(2017).

    [70] Prencipe I, Fuchs J, Pascarelli S, et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 5, e17(2017).

    [71] Puyuelo-Valdes P, de Luis D, Hernandez J, et al. Implementation of a thin, flat water target capable of high-repetition-rate MeV-range proton acceleration in a high-power laser at the CLPU[J]. Plasma Physics and Controlled Fusion, 64, 054003(2022).

    [72] Backus S, Kapteyn H C, Murnane M M, et al. Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target[J]. Optics Letters, 18, 134-136(1993).

    [73] Panasenko D, Shu A J, Gonsalves A, et al. Demonstration of a plasma mirror based on a laminar flow water film[J]. Journal of Applied Physics, 108, 044913(2010).

    [74] Poole P L, Krygier A, Cochran G E, et al. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses[J]. Scientific Reports, 6, 32041(2016).

    [75] Obst L, Metzkes-Ng J, Bock S, et al. On-shot characterization of single plasma mirror temporal contrast improvement[J]. Plasma Physics and Controlled Fusion, 60, 054007(2018).

    [76] Hah J, Nees J A, Hammig M D, et al. Characterization of a high repetition-rate laser-driven short-pulsed neutron source[J]. Plasma Physics and Controlled Fusion, 60, 054011(2018).

    CLP Journals

    [1] Ruixian Huang, Chuanyi Xi, Liqi Han, Jinqing Yu, Tongpu Yu, Xueqing Yan. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009

    Tools

    Get Citation

    Copy Citation Text

    Ziyang Peng, Zhengxuan Cao, Ying Gao, Shiyou Chen, Jiarui Zhao, Wenjun Ma. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34(8): 081003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: High Power Laser Physics and Technology

    Received: Apr. 13, 2022

    Accepted: --

    Published Online: Aug. 8, 2022

    The Author Email: Wenjun Ma (wenjun.ma@pku.edu.cn)

    DOI:10.11884/HPLPB202234.220107

    Topics