Opto-Electronic Engineering, Volume. 45, Issue 1, 170542(2018)

Image super-resolution reconstruction by fusing feature classification and independent dictionary training

Wang Ronggui*, Wang Qinghui, Yang Juan, and Hu Min
Author Affiliations
  • [in Chinese]
  • show less
    References(23)

    [1] [1] Wang L Z, Lu K, Liu P. Compressed sensing of a remote sensing image based on the priors of the reference image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 736–740.

    [2] [2] Wang Y H, Li J B, Fu P. Medical image super-resolution analysis with sparse representation[C]//Proceedings of the 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2012: 106–109.

    [3] [3] Li X, Orchard M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521–1527.

    [4] [4] Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2226–2238.

    [5] [5] Dai S Y, Han M, Xu W, et al. SoftCuts: a soft edge smoothness prior for color image super-resolution[J]. IEEE Transactions on Image Processing, 2009, 18(5): 969–981.

    [6] [6] Sun J, Shum H Y. Image super-resolution using gradient profile prior: US 2010/0086227 A1[P]. 2010-04-08.

    [7] [7] Yang J C, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2008: 1–8.

    [8] [8] Yang J C, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873.

    [9] [9] Yang J C, Wang Z W, Lin Z, et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467–3478.

    [10] [10] Xu J, Qi C, Chang Z G. Coupled K-SVD dictionary training for super-resolution[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, 2014: 3910–3914.

    [11] [11] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces, 2010: 711–730.

    [12] [12] Timofte R, De V, Van G L. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, 2013: 1920–1927.

    [13] [13] Timofte R, De S V, Van G L. A+: adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 12th Asian Conference on Computer Vision, 2014: 111–126.

    [14] [14] Aharon M, Elad M, Bruckstein A. rmK-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311– 4322.

    [15] [15] Yang W M, Tian Y P, Zhou F, et al. Consistent coding scheme for single-image super-resolution via independent dictionaries[J]. IEEE Transactions on Multimedia, 2016, 18(3): 313–325.

    [16] [16] Yang S Y, Liu Z Z, Wang M, et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction[J]. Neurocomputing, 2011, 74(17): 3193–3203.

    [17] [17] Dong W S, Li X, Zhang L , et al. Sparsity-based image denoising via dictionary learning and structural clustering[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, 2011: 457–464.

    [18] [18] Feng X G, Milanfae P. Multiscale principal components analysis for image local orientation estimation[C]//Conference Record of the 36th Asilomar Conference on Signals, Systems and Computers, 2002, 1: 478–482.

    [19] [19] Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: I.

    [20] [20] Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity single- image super-resolution based on nonnegative neighbor embedding[ C]//Proceedings of British Machine Vision Conference (BMVC), 2012.

    [21] [21] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612.

    [22] [22] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444.

    [23] [23] Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386.

    CLP Journals

    [1] Wang Ronggui, Liu Leilei, Yang Juan, Xue Lixia, Hu Min. Image super-resolution based on clustering and collaborative representation[J]. Opto-Electronic Engineering, 2018, 45(4): 170537

    [2] Wang Fei, Wang Wei, Qiu Zhiliang. A single super-resolution method via deep cascade network[J]. Opto-Electronic Engineering, 2018, 45(7): 170729

    Tools

    Get Citation

    Copy Citation Text

    Wang Ronggui, Wang Qinghui, Yang Juan, Hu Min. Image super-resolution reconstruction by fusing feature classification and independent dictionary training[J]. Opto-Electronic Engineering, 2018, 45(1): 170542

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Oct. 14, 2017

    Accepted: --

    Published Online: May. 3, 2018

    The Author Email: Ronggui Wang (wangrgui@hfut.edu.cn)

    DOI:10.12086/oee.2018.170542

    Topics