Chinese Journal of Lasers, Volume. 50, Issue 14, 1404001(2023)
Research on a Simulation Model for Earth‐Moon Space Laser Time Transfer
[1] Alley C O. Proper time experiments in gravitational fields with atomic clocks, aircraft, and laser light pulses[M]. Meystre P, Scully M O. Quantum optics, experimental gravity, and measurement theory. NATO advanced science institutes series, 94, 363-427(1983).
[2] Veillet C, Fridelance P, Feraudy D et al. LASSO observations at McDonald (Texas, USA) and OCA/CERGA (Grasse, France)[C], 113-122(1992).
[3] Exertier P, Samain E, Martin N et al. Time transfer by laser link: data analysis and validation to the ps level[J]. Advances in Space Research, 54, 2371-2385(2014).
[4] Samain E, Exertier P, Courde C et al. Time transfer by laser link: a complete analysis of the uncertainty budget[J]. Metrologia, 52, 423-432(2015).
[5] Sproll F, Hampf D, Wagner P et al. Two-color and multistatic space debris laser tracking[C](2016).
[6] Liu T, Eckl J J, Steindorfer M et al. Accurate ground to ground laser time transfer by diffuse reflections from tumbling space debris objects[J]. Metrologia, 58, 025009(2021).
[7] Meynadier F, Delva P, le Poncin-Lafitte C et al. Atomic clock ensemble in space (ACES) data analysis[J]. Classical and Quantum Gravity, 35, 035018(2018).
[8] Schlicht A, Bamann C, Marz S et al. ELT data processing-about noise, calibration capability and synergies[C](2019).
[9] Schreiber U, Prochazka I, Lauber P et al. The European laser timing (ELT) experiment on-board ACES[C], 594-599(2009).
[10] Yang F M, Li X, Zhang Z P et al. Progression of the technology of the time transfer by laser pulses[J]. Journal of Astronautic Metrology and Measurement, 24, 46-52(2004).
[11] Meng W D, Zhang H F, Huang P C et al. Design and experiment of onboard laser time transfer in Chinese BeiDou navigation satellites[J]. Advances in Space Research, 51, 951-958(2013).
[12] Degnan J J. Laser transponders for high-accuracy interplanetary laser ranging and time transfer[M]. Dittus H, Lammerzahl C, Turyshev S G. Lasers, clocks and drag-free control. Astrophysics and space science library, 349, 231-242(2008).
[13] Tooley C R, Houghton M B, Saylor R S, et al. Lunar reconnaissance orbiter mission and spacecraft design[J]. Space Science Reviews, 150, 23-62(2010).
[14] Bauer S, Hussmann H, Oberst J et al. Analysis of one-way laser ranging data to LRO, time transfer and clock characterization[J]. Icarus, 283, 38-54(2017).
[15] Degnan J J. Asynchronous laser transponders for precise interplanetary ranging and time transfer[J]. Journal of Geodynamics, 34, 551-594(2002).
[16] Degnan J J. Millimeter accuracy satellite laser ranging: a review[J]. Contributions of space geodesy to geodynamics: technology, 25, 133-162(1993).
[17] Irwin A W, Fukushima T. A numerical time ephemeris of the earth[J]. Astronomy and Astrophysics, 348, 642-652(1999).
[18] Fairhead L, Bretagnon P. An analytical formula for the time transformation TB-TT[J]. Astronomy and Astrophysics, 229, 240-247(1990).
[19] Riley W J[M]. Handbook of frequency stability analysis(2008).
[20] Thomson F, Asmar S, Oudrhiri K. Limitations on the use of the power-law form of Sy(f ) to compute Allan variance[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 1468-1472(2005).
[21] Rutman J. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress[C], 66, 1048-1075(1978).
[22] Ashby N, Patla B. Simulations of the Hadamard variance: probability distributions and confidence intervals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 636-645(2016).
[23] Timmer J, Koenig M. On generating power law noise[J]. Astronomy and Astrophysics, 300, 707-710(1995).
[25] Chaffee J W. Relating the Allan variance to the diffusion coefficients of a linear stochastic differential equation model for precision oscillators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 34, 655-658(1987).
[26] Mendes V B, Prates G, Pavlis E C et al. Improved mapping functions for atmospheric refraction correction in SLR[J]. Geophysical Research Letters, 29, 1414(2002).
[27] Mendes V B, Pavlis E C. High-accuracy zenith delay prediction at optical wavelengths[J]. Geophysical Research Letters, 31, L14602(2004).
[28] Kral L, Prochazka I, Hamal K. Optical signal path delay fluctuations caused by atmospheric turbulence[J]. Optics Letters, 30, 1767-1769(2005).
[29] Dirkx D, Noomen R, Prochazka I et al. Influence of atmospheric turbulence on planetary transceiver laser ranging[J]. Advances in Space Research, 54, 2349-2370(2014).
[30] Liu T, Chen H, Shen M et al. Effective echo extraction for space debris laser ranging using randomized Hough transform[J]. Chinese Journal of Lasers, 43, 0408002(2016).
Get Citation
Copy Citation Text
Tong Liu, Hao Chen, Pengbin Guo, Yu Shi, Jiawei Li, Wenbin Wang. Research on a Simulation Model for Earth‐Moon Space Laser Time Transfer[J]. Chinese Journal of Lasers, 2023, 50(14): 1404001
Category: Measurement and metrology
Received: Jun. 22, 2022
Accepted: Sep. 7, 2022
Published Online: Jul. 10, 2023
The Author Email: Liu Tong (liutong2021@csu.ac.cn)