Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1828006(2024)

Remote-Sensing Scene Classification Based on Memristor Convolutional Neural Network

Yibo Zhao1,2、*, Yi Zhang1,2, Chengcheng Yu1,2, and Qing Yang1,2
Author Affiliations
  • 1School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
  • show less
    Figures & Tables(11)
    Simulation results of Data-Driven Verilog-A ReRAM. (a) Bipolar resistance switching characteristics of Data-Driven Verilog-A ReRAM; (b) hysteresis loop of Data-Driven Verilog-A ReRAM
    Simulation results of Updated Data-Driven Verilog-A ReRAM. (a) Resistance switch characteristics of Updated Data-Driven Verilog-A ReRAM; (b) hysteresis loop of Updated Data-Driven Verilog-A ReRAM
    Improved convolutional neural network structure
    Cloblock structure diagram
    SK module structure diagram
    Structure of convolutional neural network based on memristor
    Processing flow chart of memristor convolutional neural network
    Sample graphs of UCMercedLandUse dataset
    Sample maps of NWPU-RESISC45 dataset
    • Table 1. Comparison of model simplification test set accuracy under data sets UC-21 and NP-45

      View table

      Table 1. Comparison of model simplification test set accuracy under data sets UC-21 and NP-45

      ModelCloblockSKAccuracy(UC-21)/%Accuracy(NP-45)/%
      ResNet1888.8182.47
      ResNet18-C92.8585.84
      ResNet18-S92.6286.17
      Proposed94.7687.54
    • Table 2. Comparison of test set accuracy and parameter number of different models under data sets UC-21 and NP-45

      View table

      Table 2. Comparison of test set accuracy and parameter number of different models under data sets UC-21 and NP-45

      ModelParameter /106Accuracy(UC-21)/%Accuracy(NP-45)/%
      ResNet1811.1888.8182.47
      SENet-ResNet181411.2789.7685.71
      SANet-ResNet503625.5690.6285.93
      Xception3720.8589.7882.27
      GhostNetv2386.1691.1983.11
      Mobilenetv3-small392.5485.9584.52
      SGENet-Res402.7893.0985.90
      LSKNet-Res412.8093.8087.06
      Proposed3.1494.7687.54
    Tools

    Get Citation

    Copy Citation Text

    Yibo Zhao, Yi Zhang, Chengcheng Yu, Qing Yang. Remote-Sensing Scene Classification Based on Memristor Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 19, 2024

    Accepted: Mar. 4, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Yibo Zhao (yibozhaodn@163.com)

    DOI:10.3788/LOP240560

    CSTR:32186.14.LOP240560

    Topics