Chinese Journal of Lasers, Volume. 48, Issue 5, 0501014(2021)

280 mHz Linewidth DBR Fiber Laser Based on PDH Frequency Stabilization with Ultrastable Cavity

Bo Yao1, Qunfeng Chen2, Yujun Chen1,3, Bin Wu4, Ji Zhang1,3, Haowei Liu1, Shanshan Wei1,3, and Qinghe Mao1,3、*
Author Affiliations
  • 1Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • 3School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 4The 41st Research Institute of CETC, Qingdao, Shandong, 266555, China
  • show less
    References(30)

    [2] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637(2015).

    [3] Wu L F, Jiang Y Y, Ma C Q et al. Coherence transfer of subhertz-linewidth laser light via an optical fiber noise compensated by remote users[J]. Optics Letters, 41, 261109(2016).

    [6] Chen Y T. Use of single-mode optical fiber in the stabilization of laser frequency[J]. Applied Optics, 28, 2017-2021(1989).

    [7] Schuldt T, Döringshoff K, Kovalchuk E et al. An ultra-stable optical frequency reference for space[J]. Proceedings of SPIE, 1056, 105632S(2017).

    [9] Dong J, Hu Y Q, Huang J C et al. Subhertz linewidth laser by locking to a fiber delay line[J]. Applied Optics, 54, 1152-1156(2015).

    [14] Young B C, Cruz F C, Itano W M et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 82, 3799(1999).

    [16] Wu L, Jiang Y, Ma C et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm[J]. Scientific Reports, 6, 24969(2016).

    [18] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017).

    [19] Tai Z Y, Yan L L, Zhang Y Y et al. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth[J]. Chinese Physics Letters, 34, 090602(2017).

    [20] Lally E M. A narrow-linewidth laser at 1550 nm using the Pound-Drever-Hall stabilization technique Blacksburg,[D]. Virginia: Virginia Tech(2006).

    [26] Xiao H J, Wang X, Ma Y et al. Linewidth measurement of narrow fiber laser based on the DSHI[J]. Opto-Electronic Engineering, 37, 57-61(2010).

    [27] Allan D W, Barnes J. Proceedings of the 35th Annual Frequency Control Symposium[EB/OL]. [2020-10-23].https://ieeexplore.ieee.org/ielx5/10321/32754/01537931.pdf?tp=&arnumber=1537931&isnumber=32754..

    [29] Peterseim M, Brozek O S, Danzmann K et al. Laser development and laser stabilization for the space-borne gravitational wave detector LISA[J]. AIP Conference Proceedings, 456, 148-155(1998).

    [30] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940(1958).

    Tools

    Get Citation

    Copy Citation Text

    Bo Yao, Qunfeng Chen, Yujun Chen, Bin Wu, Ji Zhang, Haowei Liu, Shanshan Wei, Qinghe Mao. 280 mHz Linewidth DBR Fiber Laser Based on PDH Frequency Stabilization with Ultrastable Cavity[J]. Chinese Journal of Lasers, 2021, 48(5): 0501014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Nov. 3, 2020

    Accepted: Dec. 21, 2020

    Published Online: Mar. 12, 2021

    The Author Email: Mao Qinghe (mqinghe@aiofm.ac.cn)

    DOI:10.3788/CJL202148.0501014

    Topics