Photonics Research, Volume. 9, Issue 5, 822(2021)
Plasmonic anapole states of active metamolecules
[1] T. J. Davis, D. E. Gomez. Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev. Mod. Phys., 89, 011003(2017).
[2] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).
[3] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov. Optical response features of Si-nanoparticle arrays. Phys. Rev. B, 82, 045404(2010).
[4] A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J. J. Sáenz. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express, 19, 4815-4826(2011).
[5] A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett., 12, 3749-3755(2012).
[6] A. Kuznetsov, A. Miroshnichenko, Y.-H. Fu, J. B. Zhang, B. Luk’yanchuk. Magnetic light. Sci. Rep., 2, 492(2012).
[7] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).
[8] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).
[9] N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3916(2011).
[10] A. Krasnok, A. E. Miroshnichemko, P. A. Belov, Y. Kivshar. All-dielectric optical nanoantennas. Opt. Express, 20, 20599-20604(2012).
[11] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, Y. S. Kivshar. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).
[12] T. Feng, Y. Xu, Z. Liang, W. Zhang. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett., 41, 5011-5014(2016).
[13] A. K. Ospanova, I. V. Stenishchev, A. A. Basharin. Anapole mode sustaining silicon metamaterials in visible spectral range. Laser Photon. Rev., 12, 1800005(2018).
[14] T. Feng, Y. Xu, W. Zhang, A. E. Miroshnichenko. Ideal magnetic dipole scattering. Phys. Rev. Lett., 118, 173901(2017).
[15] G.-M. Pan, S. Ma, K. Chen, H. Zhang, L. Zhou, Z.-H. Hao, Q.-Q. Wang. Pure magnetic-quadrupole scattering and efficient second-harmonic generation from plasmon-dielectric hybrid nano-antennas. Nanotechnology, 30, 265202(2019).
[16] J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, S. I. Bozhevolnyi. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 396(2019).
[17] C. M. Ho, R. J. Scherrer. Anapole dark matter. Phys. Lett. B, 722, 341-346(2013).
[18] V. A. Fedotov, A. Rogacheva, V. Savinov, D. Tsai, N. I. Zheludev. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep., 3, 2967(2013).
[19] J. S. T. Gongora, A. E. Miroshnichenko, Y. S. Kivshar, A. Fratalocchi. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun., 8, 15535(2017).
[20] Y. Yang, S. I. Bozhevolnyi. Nonradiating anapole states in nanophotonics: from fundamentals to applications. Nanotechnology, 30, 204001(2019).
[21] K. V. Baryshnikova, D. A. Smirnova, B. S. Lukyanchuk, Y. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).
[22] V. Savinov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Optical anapoles. Commun. Phys., 2, 69(2019).
[23] I. E. Takou, A. C. Tasolamprou, O. Tsilipakos, Z. Viskadourakis, M. Kafesaki, G. Kenanakis, E. N. Economou. Anapole tolerance to dissipation losses in thermally tunable water-based metasurfaces. Phys. Rev. Appl., 15, 014043(2021).
[24] R. Verre, D. G. Baranov, B. Munkhbat, J. Cuadra, M. Käll, T. Shegai. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679-683(2019).
[25] S.-Q. Li, K. B. Crozier. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B, 97, 245423(2018).
[26] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B. Evlyukhin, A. Miroshnichenko, A. S. Shalin. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photon. Rev., 13, 1800266(2019).
[27] K. Marinov, A. D. Boardman, V. A. Fedotov, N. Zheludev. Toroidal metamaterial. New J. Phys., 9, 324(2007).
[28] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Toroidal dipolar response in a metamaterial. Science, 330, 1510-1512(2010).
[29] A. B. Evlyukhin, T. Fischer, C. Reinhardt, B. N. Chichkov. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B, 94, 205434(2016).
[30] L. Wei, Z. Xi, N. Bhattacharya, H. P. Urbach. Excitation of the radiationless anapole mode. Optica, 3, 799-802(2016).
[31] A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, N. I. Zheludev. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X, 5, 011036(2015).
[32] A. C. Tasolamprou, I. Tsukerman, O. Tsilipakos, A. Basharin, M. Kafesaki, C. M. Soukoulis, E. N. Economou. Chapter 7: Toroidal multipoles in metamaterials. Compendium on Electromagnetic Analysis from Electrostatics to Photonics: Fundamentals and Applications for Physicists and Engineers(2019).
[33] Z.-G. Dong, P. Ni, J. Zhu, X. Yin, X. Zhang. Toroidal dipole response in a multifold double-ring metamaterial. Opt. Express, 20, 13065-13070(2012).
[34] W. Liu, J. Zhang, A. E. Miroshnichenko. Toroidal dipole‐induced transparency in core–shell nanoparticles. Laser Photon. Rev., 9, 564-570(2015).
[35] W. Liu, J. Zhang, B. Lei, H. Hu, A. E. Miroshnichenko. Invisible nanowires with interfering electric and toroidal dipoles. Opt. Lett., 40, 2293-2296(2015).
[36] F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. A. Li. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol., 8, 95-99(2013).
[37] G.-M. Pan, D.-J. Yang, L. Zhou, Z.-H. Hao. Low-loss resonance modes in a gain-assisted plasmonic multimer. J. Phys. D, 51, 115104(2018).
[38] A. Lovera, B. Gallinet, P. Nordlander, O. J. F. Martin. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano, 7, 4527-4536(2013).
[39] R. Verre, Z. J. Yang, T. Shegai, M. Käll. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers. Nano Lett., 15, 1952-1958(2015).
[40] Z.-Y. Li, Y. Xia. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett., 10, 243-249(2010).
[41] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).
[42] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).
[43] P. Grahn, A. Shevchenko, M. Kaivola. Electromagnetic multipole theory for optical nanomaterials. New J. Phys., 14, 093033(2012).
[44] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun., 407, 17-21(2018).
[45] A. B. Evlyukhin, B. N. Chichkov. Multipole decompositions for directional light scattering. Phys. Rev. B, 100, 125415(2019).
[46] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. L. Yang. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).
[47] J. F. Li, C. Y. Li, R. F. Aroca. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev., 46, 3962-3979(2017).
[48] H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, B. Yang. Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking. Small, 8, 1503-1509(2012).
[49] V. Zenin, A. Evlyukhin, S. Novikov, Y. Yang, R. Malureanu, A. Lavrinenko, B. Chichkov, S. Bozhevolnyi. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett., 17, 7152-7159(2017).
[50] E. Evlyukhin, E. Kim, D. Goldberger, P. Cifligu, S. Schyck, P. F. Weck, M. Pravica. High-pressure-assisted X-ray-induced damage as a new route for chemical and structural synthesis. Phys. Chem. Chem. Phys., 20, 18949-18956(2018).
[51] Y. Sun, Z. Liu, P. Pianetta, D.-I. Lee. Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen. J. Appl. Phys., 102, 074908(2007).
[52] E. Evlyukhin, E. Kim, P. Cifligu, D. Goldberger, S. Schyck, B. Harris, S. Torres, G. R. Rossman, M. Pravica. Synthesis of a novel strontium-based wide-bandgap semiconductor via X-ray photochemistry at extreme conditions. J. Mater. Chem. C, 6, 12473-12478(2018).
Get Citation
Copy Citation Text
Gui-Ming Pan, Fang-Zhou Shu, Le Wang, Liping Shi, Andrey B. Evlyukhin, "Plasmonic anapole states of active metamolecules," Photonics Res. 9, 822 (2021)
Category: Surface Optics and Plasmonics
Received: Dec. 10, 2020
Accepted: Mar. 8, 2021
Published Online: May. 7, 2021
The Author Email: Liping Shi (shiliping@westlake.edu.cn), Andrey B. Evlyukhin (a.b.evlyukhin@daad-alumni.de)