Acta Photonica Sinica, Volume. 53, Issue 10, 1053402(2024)

Precision Processing Technology Based on Laser Filament(Invited)

Hongzhi HE, Zhaolin CHAI, Nan ZHANG, and Weiwei LIU*
Author Affiliations
  • Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University,Tianjin 300350, China
  • show less
    References(46)

    [1] CHEN Y. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 135, 57-72(2015).

    [2] KAWABATA Y, TANIGUCHI J, MIYAMOTO I. XPS studies on damage evaluation of single-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching[J]. Diamond and Related Materials, 13, 93-98(2004).

    [3] MILOV I, ZHAKHOVSKY V, ILNITSKY D et al. Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation[J]. Applied Surface Science, 528, 146952(2020).

    [4] LI Y, ZHAN X, GAO C et al. Comparative study of infrared laser surface treatment and ultraviolet laser surface treatment of CFRP laminates[J]. The International Journal of Advanced Manufacturing Technology, 102, 4059-4071(2019).

    [5] PALTAUF G, DYER P E. Photomechanical processes and effects in ablation[J]. Chemical Reviews, 103, 487-518(2003).

    [6] LIU X, NATSUME K, MAEGAWA S et al. Micromachining of polycrystalline CVD diamond-coated cutting tool with femtosecond laser[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14(2020).

    [7] HE Z, LEI L, LIN S et al. Metal material processing using femtosecond lasers: theories, principles, and applications[J]. Materials (Basel), 17, 3386(2024).

    [8] QIU J, MIURA K, HIRAO K. Fabrication of micro-optical components by using a femtosecond laser[J]. Optical Components and Materials, 5350, 1-12(2004).

    [9] LU C, DUAN W, WANG K et al. Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser[J]. Ferroelectrics, 564, 37-51(2020).

    [10] WANG T, LIN L, ZHANG N. Compound structures of periodic holes and curved ripples fabricated by the interference between the converging surface plasmon polaritons and femtosecond laser[J]. Applied Sciences, 12, 2543(2022).

    [11] LI Z Z, TIAN Z N, LI Z T et al. Photon propagation control on laser-written photonic chips enabled by composite waveguides[J]. Photonics Research, 11, 829-838(2023).

    [12] ZHAN X, XU H, LI C et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments[J]. Optics Letters, 42, 510-513(2017).

    [13] FU X Y, CHEN Z D, HAN D D et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 8, 577-588(2020).

    [14] LIU Weiwei, XUE Jiayun, SU Qiang et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).

    [15] HAFIZI B, ISAACS J, PALASTRO J P et al. Nonlinear propagation of chirped laser pulses through a dispersive and turbulent atmosphere[J]. Journal of the Optical Society of America B, 41, 1457-1470(2024).

    [16] BAK J, URDANETA G, POKHAREL S et al. Two-dimensional high resolution electron properties of femtosecond laser-induced plasma filament in atmospheric pressure argon[J]. Scientific Reports, 14, 3703(2024).

    [17] JIANG H, LI C, MAO X et al. Reliable joining between MgAl2O4 and Ti6Al4V by ultrashort pulse laser[J]. Ceramics International, 50, 31609-31617(2024).

    [18] BARBATO P, OSELLAME R, MARTíNEZ VáZQUEZ R. Femtosecond laser nanomachining of high‐aspect‐ratio channels in bulk fused silica[J]. Advanced Materials Technologies, 2400240(2024).

    [19] LIAO Kai, WANG Wenjun, HAN Xuesong et al. Femtosecond laser single-pass high quality direct cutting thin quartz glass process based on filament effect(invited)[J]. Acta Photonica Sinica, 50, 0650101(2021).

    [20] WANG Y, DAI Y, MUMTAZ F et al. Advanced techniques in quartz wafer precision processing: stealth dicing based on filament-induced laser machining[J]. Optics & Laser Technology, 171, 110474(2024).

    [21] MARKAUSKAS E, ZUBAUSKAS L, RACIUKAITIS G et al. Femtosecond laser cutting of 110-550 microm thickness borosilicate glass in ambient air and water[J]. Micromachines (Basel), 14, 176(2023).

    [22] AHSAN M S, BSOHN I, KCHOI H. Gorilla glass cutting using femtosecond laser pulse filaments[J]. Applied Sciences, 14, 312(2023).

    [23] YAN W, SHI S, XIAO L et al. The influence of the interface on the micromechanical behavior of unidirectional fiber-reinforced ceramic matrix composites: an analysis based on the periodic symmetric boundary conditions[J]. Symmetry, 16, 695(2024).

    [24] ZHANG J, ZHANG F, WANG T J et al. Femtosecond laser filament ablated grooves of SiC ceramic matrix composite and its grooving monitoring by plasma fluorescence[J]. Ceramics International, 50, 16474-16480(2024).

    [25] LIAO K, WANG W, MEI X et al. Fabrication of millimeter-scale deep microchannels in fused silica by femtosecond laser filamentation effect[J]. Optics & Laser Technology, 142, 107201(2021).

    [26] LIU B, YAN Y, ZHAO J et al. Research on hole depth in femtosecond laser deep micropore processing technology based on filament effect[J]. Optik, 249, 168307(2022).

    [27] VAREL H, ASHKENASI D, ROSENFELD A et al. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A: Materials Science & Processing, 65, 367-373(1997).

    [28] ERTORER E, HAQUE M, LI J et al. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating[J]. Optics Express, 26, 9323-9331(2018).

    [29] WATANABE W, ASANO T, YAMADA K et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses[J]. Optics Letters, 28, 2491-2493(2003).

    [30] CHO S H, KUMAGAI H, MIDORIKAWA K. Fabrication of multi-core structures in an optical fiber using plasma self-channeling[J]. Optics Express, 11, 1780-1786(2003).

    [31] LI L, NIE W, LI Z et al. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal[J]. Journal of Lightwave Technology, 37, 3452-3458(2019).

    [32] ZHANG B, HE S, YANG Q et al. Femtosecond laser modification of 6H–SiC crystals for waveguide devices[J]. Applied Physics Letters, 116, 111903(2020).

    [33] KROESEN S, HORN W, IMBROCK J et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing[J]. Optics Express, 22, 23339-23348(2014).

    [34] CHEN M, YANG X X, SHU F. Dual-band tunable electromagnetically induced transparency in vanadium dioxide-based miniaturized terahertz metasurfaces[J]. Materials Research Bulletin, 180, 113000(2024).

    [35] LIN T, ZENG Q, HUANG Y et al. Femtosecond laser direct writing wedge metallic microcavities for terahertz sensing[J]. Optics & Laser Technology, 180, 111434(2025).

    [36] ZHANG Z, DAI Z, WANG Y et al. Fabricating THz spiral zone plate by high throughput femtosecond laser air filament direct writing[J]. Scientific Reports, 10, 13965(2020).

    [37] KISELEV D, WOESTE L, WOLF J P. Filament-induced laser machining (FILM)[J]. Applied Physics B, 100, 515-520(2010).

    [39] HEISTERKAMP A, HERMAN P R, MEUNIER M et al. Rapid microfabrication of transparent materials using a filamented beam of the IR femtosecond laser[J]. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV, 8972, 897216(2014).

    [40] TAMAKI T, WATANABE W, NISHII J et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 44, L687(2005).

    [41] CHEN J, CARTER R M, THOMSON R R et al. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding[J]. Optics Express, 23, 18645-18657(2015).

    [42] YU H, ZHAO J X, ZHANG L J et al. Femtosecond laser welding of sapphire-copper using a thin film titanium interlayer[J]. Optics & Laser Technology, 177, 111063(2024).

    [43] ZHANG L, ZHU Z, WEN J et al. The characteristics and dynamics of fused silica-aluminum alloy welding during mJ-level femtosecond laser[J]. Materials & Design, 239, 112790(2024).

    [44] SWOBODA M, BEYER C, RIESKE R et al. Laser assisted SiC wafering using COLD SPLIT[J]. Materials Science Forum, 897, 403-406(2017).

    [45] HAN S, YU H, HE C et al. Laser slicing of 4H-SiC wafers based on picosecond laser-induced micro-explosion via multiphoton processes[J]. Optics & Laser Technology, 154, 108323(2022).

    [46] ZHANG Y, XIE X, HUANG Y et al. Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing[J]. Ceramics International, 49, 5249-5260(2023).

    [47] MEESAT R, BELMOUADDINE H, ALLARD J et al. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E2508-E2513(2012).

    Tools

    Get Citation

    Copy Citation Text

    Hongzhi HE, Zhaolin CHAI, Nan ZHANG, Weiwei LIU. Precision Processing Technology Based on Laser Filament(Invited)[J]. Acta Photonica Sinica, 2024, 53(10): 1053402

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Micro/Nanophotonics

    Received: Aug. 15, 2024

    Accepted: Sep. 26, 2024

    Published Online: Dec. 5, 2024

    The Author Email: Weiwei LIU (liuweiwei@nankai.edu.cn)

    DOI:10.3788/gzxb20245310.1053402

    Topics