Journal of Synthetic Crystals, Volume. 51, Issue 3, 371(2022)

Thermal Field Design and Optimization of Resistance Heated Large-Size SiC Crystal Growth System

LU Jiazheng1、*, ZHANG Hui2, ZHENG Lili1, MA Yuan3, and SONG Depeng4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(39)

    [1] [1] YOLE. Power SiC: materials, devices and applications 2020[R]. 2020.

    [2] [2] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351.

    [5] [5] CHEN Q S, ZHANG H, MA R H, et al. Modeling of transport processes and kinetics of silicon carbide bulk growth[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 299-306.

    [6] [6] MA R H, CHEN Q S, ZHANG H, et al. Modeling of silicon carbide crystal growth by physical vapor transport method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 352-359.

    [7] [7] GAO B, CHEN X J, NAKANO S, et al. Analysis of SiC crystal sublimation growth by fully coupled compressible multi-phase flow simulation[J]. Journal of Crystal Growth, 2010, 312(22): 3349-3355.

    [9] [9] LIU X, CHEN B Y, SONG L X, et al. The behavior of powder sublimation in the long-term PVT growth of SiC crystals[J]. Journal of Crystal Growth, 2010, 312(9): 1486-1490.

    [10] [10] SUDARSHAN T S, MAXIMENKO S I. Bulk growth of single crystal silicon carbide[J]. Microelectronic Engineering, 2006, 83(1): 155-159.

    [11] [11] SHIRAMOMO T, GAO B, MERCIER F, et al. Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2012, 352(1): 177-180.

    [12] [12] NAKANO T, SHINAGAWA N, YABU M, et al. Formation and multiplication of basal plane dislocations during physical vapor transport growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 516: 51-56.

    [13] [13] GAO B, KAKIMOTO K. Optimization of power control in the reduction of basal plane dislocations during PVT growth of 4H-SiC single crystals[J]. Journal of Crystal Growth, 2014, 392: 92-97.

    [14] [14] RENGARAJAN V, BROUHARD B K, NOLAN M C, et al. Axial gradient transport growth process and apparatus utilizing resistive heating: US9228274[P]. 2016-01-05.

    [15] [15] XU X P, ZWIEBACK I, GUPTA A K, et al. Large diameter silicon carbide single crystals and apparatus and method of manufacture thereof: US11035054[P]. 2021-06-15.

    [16] [16] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.

    [17] [17] LIU L H, EDGAR J H. Transport effects in the sublimation growth of aluminum nitride[J]. Journal of Crystal Growth, 2000, 220(3): 243-253.

    [18] [18] WANG X L, CAI D, ZHANG H. A novel method to increase the growth rate in sublimation crystal growth of advanced materials[J]. International Journal of Heat and Mass Transfer, 2007, 50(7/8): 1221-1230.

    [19] [19] WANG X L, CAI D, ZHANG H. Increase of SiC sublimation growth rate by optimizing of powder packaging[J]. Journal of Crystal Growth, 2007, 305(1): 122-132.

    [20] [20] CHEN Q S, ZHANG H, PRASAD V, et al. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals[J]. Journal of Heat Transfer, 2001, 123(6): 1098-1109.

    [21] [21] MA R H, ZHANG H, HA S, et al. Integrated process modeling and experimental validation of silicon carbide sublimation growth[J]. Journal of Crystal Growth, 2003, 252(4): 523-537.

    [22] [22] MA R H, ZHANG H, DUDLEY M, et al. Thermal system design and dislocation reduction for growth of wide band gap crystals: application to SiC growth[J]. Journal of Crystal Growth, 2003, 258(3/4): 318-330.

    [23] [23] WU B, ZHANG H. Transport phenomena in an aluminum nitride induction heating sublimation growth system[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 2989-3001.

    [24] [24] CAI D, ZHENG L L, ZHANG H, et al. Modeling of gas phase and surface reactions in an aluminum nitride growth system[J]. Journal of Crystal Growth, 2006, 293(1): 136-145.

    [25] [25] INUI F, GAO B, NAKANO S, et al. Numerical analysis of the velocity of SiC growth by the top seeding method[J]. Journal of Crystal Growth, 2012, 348(1): 71-74.

    [26] [26] KULIK A V, BOGDANOV M V, KARPOV S Y, et al. Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth[J]. Materials Science Forum, 2004, 457/458/459/460: 67-70.

    [27] [27] PALMOUR J W. Silicon carbide materials and devices for power switching applications[R]. Wolfspeed, A Cree Company, 2019.

    [28] [28] SiC Materials Products[EB/OL]. Wolfspeed. https: //www.wolfspeed.com/products/materials/

    [29] [29] Silicon Carbide Substrates Products[EB/OL]. Ⅱ-Ⅵ Incorporated. https: //ii-vi.com/silicon-carbide-substrates/

    [30] [30] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world's first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088.

    [33] [33] GAO W M, KONG L X, HODGSON P D. Computational simulation of gas flow and heat transfer near an immersed object in fluidized beds[J]. Advances in Engineering Software, 2007, 38(11/12): 826-834.

    [34] [34] WANG X L, ZUNJARRAO S C, SINGH R P, et al. Advanced model of silicon carbide based uranium ceramic nuclear fuel production[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2): 286-293.

    [35] [35] CHOUROU K, ANIKIN M, BLUET J M, et al. Modelling of SiC sublimation growth process: analyses of macrodefects formation[J]. Materials Science and Engineering: B, 1999, 61/62: 82-85.

    [36] [36] TAIROV Y M. Growth of bulk SiC[J]. Materials Science and Engineering: B, 1995, 29(1/2/3): 83-89.

    [37] [37] DROWART J, DE MARIA G, INGHRAM M G. Thermodynamic study of SiC utilizing a mass spectrometer[J]. The Journal of Chemical Physics, 1958, 29(5): 1015-1021.

    [38] [38] LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69.

    [39] [39] MA R H. Modeling and design of PVT growth of silicon carbide crystals[D]. New York: State University of New York at Stony Brook, 2003.

    [40] [40] ARIYAWONG K. Process modeling for the growth of SiC using PVT and TSSG methods[D]. Grenoble: Université Grenoble Alpes, 2015.

    [41] [41] STEINER J, ARZIG M, DENISOV A, et al. Impact of varying parameters on the temperature gradients in 100 mm silicon carbide bulk growth in a computer simulation validated by experimental results[J]. Crystal Research and Technology, 2020, 55(2): 1900121.

    [42] [42] MA R H, ZHANG H, PRASAD V, et al. Growth kinetics and thermal stress in the sublimation growth of silicon carbide[J]. Crystal Growth & Design, 2002, 2(3): 213-220.

    CLP Journals

    [1] XU Zheren, ZHANG Jijun, CAO Xiangzhi, LU Wei, LIU Hao, QI Yongwu. Study on Thermal Field of Growth System of CdZnTe Crystal Growth by Traveling Heater Method[J]. Journal of Synthetic Crystals, 2023, 52(9): 1589

    [2] LU Jiazheng, ZHANG Hui, ZHENG Lili, MA Yuan. Modeling and Numerical Simulation of Heat-Mass Transport Process for Large-Size Silicon Carbide Crystal Growth[J]. Journal of Synthetic Crystals, 2023, 52(4): 550

    Tools

    Get Citation

    Copy Citation Text

    LU Jiazheng, ZHANG Hui, ZHENG Lili, MA Yuan, SONG Depeng. Thermal Field Design and Optimization of Resistance Heated Large-Size SiC Crystal Growth System[J]. Journal of Synthetic Crystals, 2022, 51(3): 371

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 21, 2021

    Accepted: --

    Published Online: Apr. 21, 2022

    The Author Email: Jiazheng LU (lz_2020@foxmail.com)

    DOI:

    CSTR:32186.14.

    Topics