Infrared and Laser Engineering, Volume. 51, Issue 1, 20210671(2022)
Research progress of on-chip integrated optical sensing technology (Invited)
[1] Borisov S M, Wolfbeis O S. Optical biosensors[J]. Chemical Reviews, 108, 423-461(2008).
[2] Singh V, Hu J J, Agarwal A M, et al. Integrated optical sensors[J]. IEEE Photonics Journal, 4, 638-641(2012).
[3] Yan X, Li H X, Su X G. Review of optical sensors for pesticides[J]. Trac-Trends in Analytical Chemistry, 103, 1-20(2018).
[4] Wang Q, Zhao W M. Optical methods of antibiotic residues detections: A comprehensive review[J]. Sensors and Actuators B-Chemical, 269, 238-256(2018).
[5] Salek-Maghsoudi A, Vakhshiteh F, Torabi R, et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers[J]. Biosensors & Bioelectronics, 99, 122-135(2018).
[6] Khansili N, Rattu G, Krishna P M. Label-free optical biosensors for food and biological sensor applications[J]. Sensors and Actuators B-Chemical, 265, 35-49(2018).
[7] Gao M K, Gao Y H, Tian M S, et al. Research on the application of optical sensor in quality and safety of agricultural products[J]. Chinese Journal of Analysis Laboratory, 39, 1225-1232(2020).
[8] Tariq A, Baydoun J, Remy C, et al. Fluorescent molecular probe based optical fiber sensor dedicated to pH measurement of concrete[J]. Sensors and Actuators B-Chemical, 327, 128906(2021).
[9] Simsir E A, Erdemir S, Tabakci M, et al. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9, 10-d]imidazolyl-calix[4]arene fluorescent probe[J]. Analytica Chimica Acta, 1162, 338494(2021).
[10] Lin D, Zheng Z C, Wang Q W, et al. Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing[J]. Optics Express, 24, 24750-24759(2016).
[11] Shvalya V, Filipic G, Zavasnik J, et al. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology[J]. Applied Physics Reviews, 7, 031307(2020).
[12] Adao T, Hruska J, Padua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote Sensing, 9, 1110(2017).
[13] Mahlein A K, Kuska M T, Behmann J, et al. Hyperspectral sensors and imaging technologies in phytopathology: State of the art[J]. Annual Review of Phytopathology, 56, 535-558(2018).
[14] Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications[J]. Chemical Reviews, 114, 5728-5752(2014).
[15] Lopez G A, Estevez M C, Soler M, et al. Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration[J]. Nanophotonics, 6, 123-136(2017).
[16] Geng Z X, Zhang X, Fan Z Y, et al. Recent progress in optical biosensors based on smartphone platforms[J]. Sensors, 17, 2449(2017).
[17] Liang Y, Xu T. Integrated miniature plasmonic nanostructure sensors[J]. Physics, 48, 22-28(2019).
[18] Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform[J]. Spectroscopy and Spectral Analysis, 40, 333-342(2020).
[19] Yang Z Y, Albrow-Owen T, Cai W W, et al. Miniaturization of optical spectrometers[J]. Science, 371, eabe0722(2021).
[20] Zhang L, Pan J, Zhang Z, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 3, 190022(2020).
[21] Zheng Y, Wu Z F, Shum P P, et al. Sensing and lasing applications of whispering gallery mode microresonators[J]. Opto-Electronic Advances, 1, 180085(2018).
[22] Hao Y F, Feng Z Y, Han C, et al. Application of high sensitive detection sensor chip in detection of brain glioma disease[J]. Infrared and Laser Engineering, 50, 20210279(2021).
[23] Hasan D, Lee C. Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR[J]. Advanced Science, 5, 1700581(2018).
[24] Visser D, Choudhury B D, Krasovska I, et al. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays[J]. Optics Express, 25, 12171-12181(2017).
[25] Im H, Sutherland J N, Maynard J A, et al. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics[J]. Analytical Chemistry, 84, 1941-1947(2012).
[26] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).
[27] Rosenblum S, Lovsky Y, Arazi L, et al. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators[J]. Nature Communications, 6, 6788(2015).
[28] Hong L Y, Li H, Yang H, et al. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS[J]. IEEE Journal of Solid-State Circuits, 52, 2388-2406(2017).
[29] Zhu J G, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator[J]. Nature Photonics, 4, 46-49(2010).
[30] Jin T N, Lin H Y G, Lin P T. Monolithically integrated Si-on-AIN mid-infrared photonic chips for real-time and label-free chemical sensing[J]. ACS Applied Materials & Interfaces, 9, 42905-42911(2017).
[31] Rodriguez-Saona L, Aykas D P, Borba K R, et al. Miniaturization of optical sensors and their potential for high-throughput screening of foods[J]. Current Opinion in Food Science, 31, 136-150(2020).
[32] [32] Johann S, Mansurova M, Kohlhoff H, et al. Wireless mobile sens device f insitu measurements with multiple fluescent senss [C]IEEE Senss Conference, 2018: 10671070.
[33] Zhang J L, Khan I, Zhang Q W, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor[J]. Biosensors & Bioelectronics, 99, 312-317(2018).
[34] Xu X Y, Chen W J, Zhao G M, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping[J]. Light-Science & Applications, 7, 62(2018).
[35] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105(2018).
[36] Estevez M C, Alvarez M, Lechuga L M. Integrated optical devices for lab-on-a-chip biosensing applications[J]. Laser & Photonics Reviews, 6, 463-487(2012).
[37] Wang H, Zhang Y L, Wang W, et al. On-chip laser processing for the development of multifunctional microfluidic chips[J]. Laser & Photonics Reviews, 11, 1600116(2017).
[38] Yavas O, Svedendahl M, Dobosz P, et al. On-a-chip biosensing based on all-dielectric nanoresonators[J]. Nano Letters, 17, 4421-4426(2017).
[39] Brown C, Goncharov A, Ballard Z S, et al. Neural network-based on-chip spectroscopy using a scalable plasmonic encoder[J]. ACS Nano, 15, 6305-6315(2021).
[40] Garcia-Meca C, Lechago S, Brimont A, et al. On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices[J]. Light-Science & Applications, 6, e17053(2017).
[41] Lin P T, Kwok S W, Lin H Y G, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing[J]. Nano Letters, 14, 231-238(2014).
[42] Acimovic S S, Sipova H, Emilsson G, et al. Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing[J]. Light-Science & Applications, 6, e17042(2017).
[43] Lu C H, Shih T S, Shih P C, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications[J]. Lab on a Chip, 20, 424-433(2020).
[44] Zhang Y, Wang G, Yang L, et al. Recent advances in gold nanostructures based biosensing and bioimaging[J]. Coordination Chemistry Reviews, 370, 1-21(2018).
[45] Blanchard-Dionne A P, Meunier M. Sensing with periodic nanohole arrays[J]. Advances in Optics and Photonics, 9, 891-940(2017).
[46] Brolo A G. Plasmonics for future biosensors[J]. Nature Photonics, 6, 709-713(2012).
[47] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).
[48] Zanchetta G, Lanfranco R, Giavazzi F, et al. Emerging applications of label-free optical biosensors[J]. Nanophotonics, 6, 627-645(2017).
[49] Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser & Optoelectronics Progress, 56, 202407(2019).
[50] Ma Y M, Dong B W, Lee C K. Progress of infrared guided-wave nanophotonic sensors and devices[J]. Nano Convergence, 7, 12(2020).
[51] Song J F, Luo X S, Kee J S, et al. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor[J]. Optics Express, 21, 17931-17940(2013).
[52] Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors[J]. Lab on a Chip, 7, 955-977(2007).
[53] Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electronic Advances, 3, 07190040(2020).
[54] Wen L, Liang L, Yang X G, et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrica readout in Au-Si nanojunctions[J]. ACS Nano, 13, 6963-6972(2019).
[55] Schwarz B, Reininger P, Ristanic D, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures[J]. Nature Communications, 5, 4085(2014).
[56] Du W, Wang T, Chu H S, et al. Highly efficient on-chip direct electronic-plasmonic transducers[J]. Nature Photonics, 11, 623-627(2017).
[57] Singh R, Su P, Kimerling L, et al. Towards on-chip mid infrared photonic aerosol spectroscopy[J]. Applied Physics Letters, 113, 231107(2018).
[58] Shakoor A, Cheah B C, Hao D, et al. Plasmonic sensor monolithically integrated with a CMOS photodiode[J]. ACS Photonics, 3, 1926-1933(2016).
[59] Zhao Y, Zhao J, Zhao Q. Review of no-core optical fiber sensor and applications[J]. Sensors and Actuators a-Physical, 313, 112160(2020).
[60] Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs[J]. Nature Communications, 7, 13371(2016).
[61] Mittal V, Mashanovich G Z, Wilkinson J S. Perspective on thin film waveguides for on-chip mid-infrared spectroscopy of liquid biochemical analytes[J]. Analytical Chemistry, 92, 10891-10901(2020).
[62] Krupin O, Asiri H, Wang C, et al. Biosensing using straight long-range surface plasmon waveguides[J]. Optics Express, 21, 698-709(2013).
[63] Tombez L, Zhang E J, Orcutt J S, et al. Methane absorption spectroscopy on a silicon photonic chip[J]. Optica, 4, 1322-1325(2017).
[64] Han Z, Singh V, Kita D, et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors[J]. Applied Physics Letters, 109, 071111(2016).
[65] Su P, Han Z, Kita D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector[J]. Applied Physics Letters, 114, 051103(2019).
[66] Ma Y M, Chang Y H, Dong B W, et al. Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing[J]. ACS Nano, 15, 10084-10094(2021).
[67] Lin H, Kim C S, Li L, et al. Monolithic chalcogenide glass waveguide integrated interband cascaded laser[J]. Optical Materials Express, 11, 2869-2876(2021).
[68] Li L, Lin H T, Huang Y Z, et al. High-performance flexible waveguide-integrated photodetectors[J]. Optica, 5, 44-51(2018).
[69] Zhao H L, Baumgartner B, Raza A, et al. Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer[J]. Optics Letters, 45, 447-450(2020).
[70] Vlk M, Datta A, Alberti S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light-Science & Applications, 10, 26(2021).
[71] Du Q Y, Luo Z Q, Zhong H K, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 6, 506-510(2018).
[72] Yoo K M, Midkiff J, Rostamian A, et al. InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor[J]. ACS Sensors, 5, 861-869(2020).
[73] Wu Y B, Qu Z B, Osman A, et al. Nanometallic antenna-assisted amorphous silicon waveguide integrated bolometer for mid-infrared[J]. Optics Letters, 46, 677-680(2021).
[74] Consani C, Ranacher C, Tortschanoff A, et al. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter[J]. Sensors and Actuators B-Chemical, 274, 60-65(2018).
[75] Chen W J, Ozdemir S K, Zhao G M, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-198(2017).
[76] Liu S, Sun W Z, Wang Y J, et al. End-fire injection of light into high-
[77] Xu Y, Bai P, Zhou X D, et al. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth[J]. Advanced Optical Materials, 7, 1801433(2019).
[78] Liang L, Wen L, Jiang C P, et al. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 48, 0203001(2019).
[79] Liang L, Hu X, Wen L, et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing[J]. Laser & Photonics Reviews, 12, 1800078(2018).
[80] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 108, 462-493(2008).
[81] Zang K, Zhang D K, Huo Y J, et al. Microring bio-chemical sensor with integrated low dark current Ge photodetector[J]. Applied Physics Letters, 106, 101111(2015).
[82] Song J F, Luo X S, Tu X G, et al. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors[J]. Optics Express, 20, 4189-4197(2012).
[83] Wang R J, Sprengel S, Vasiliev A, et al. Widely tunable 2.3 μm III-V-on-silicon vernier lasers for broadband spectroscopic sensing[J]. Photonics Research, 6, 858-866(2018).
[84] Cohen D A, Nolde J A, Pedretti A T, et al. Sensitivity and scattering in a monolithic heterodyned laser biochemical sensor[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1124-1131(2003).
[85] Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode[J]. Nature Photonics, 11, 297-301(2017).
[86] Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon[J]. Optica, 5, 528-533(2018).
[87] Rong H S, Jones R, Liu A S, et al. A continuous-wave Raman silicon laser[J]. Nature, 433, 725-728(2005).
[88] Cetin A E, Coskun A F, Galarreta B C, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging[J]. Light-Science & Applications, 3, e122(2014).
[89] Wang J W, Sanchez M M, Yin Y, et al. Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap[J]. Advanced Materials Technologies, 5, 1901138(2020).
[90] Gopinath S C B. Biosensing applications of surface plasmon resonance-based Biacore technology[J]. Sensors and Actuators B-Chemical, 150, 722-733(2010).
[91] Dattner Y, Yadid-Pecht O. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection[J]. Sensors, 10, 5014-5027(2010).
[92] Tokuda T, Matsuoka H, Tachikawa N, et al. CMOS sensor-based miniaturised in-line dual-functional optical analyser for high-speed, in situ chirality monitoring[J]. Sensors and Actuators B-Chemical, 176, 1032-1037(2013).
[93] [93] Bollschweiler L, English A, Baker R J, et al. Chipscale nanophotonic chemical biological senss using CMOS process [C]52nd IEEE International west Symposium on Circuits Systems, IEEE, 2009.
[94] [94] Koppa S, Joo Y J, Venkataramasubramani M, et al. Nanoscale biosens chip [C]53rd west Symposium on Circuits Systems (MWSCAS 2010), IEEE, 2010.
[95] Mazzotta F, Wang G L, Hagglund C, et al. Nanoplasmonic biosensing with on-chip electrical detection[J]. Biosensors & Bioelectronics, 26, 1131-1136(2010).
[96] Turker B, Guner H, Ayas S, et al. Grating coupler integrated photodiodes for plasmon resonance based sensing[J]. Lab on a Chip, 11, 282-287(2011).
[97] Chen Q, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technology Letters, 24, 197-199(2012).
[98] Chen Q, Hu X, Wen L, et al. Nanophotonic image sensors[J]. Small, 12, 4922-4935(2016).
[99] Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials[J]. Chemical Society Reviews, 43, 8200-8214(2014).
[100] [100] Augel L, Fischer I A, Dunbar L A, et al. Plasmonic nanohole arrays on SiGe heterostructures: An approach f integrated biosenss [C]SPIE, 2015, 9724: 97240M.
[101] [101] Augel L, Bechler S, Kner R, et al. An integrated plasmonic refractive index sens: Al nanohole arrays on Ge PIN photodiodes [C]IEEE International Electron Devices Meeting (IEDM), 2017: 896897.
[102] Augel L, Kawaguchi Y, Bechler S, et al. Integrated collinear refractive index sensor with Ge PIN photodiodes[J]. ACS Photonics, 5, 4586-4593(2018).
[103] Seiler S T, Rich I S, Lindquist N C. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing[J]. Nanotechnology, 27, 184001(2016).
[104] Blockstein L, Yadid-Pecht O. Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging[J]. IEEE Photonics Journal, 6, 6600716(2014).
[105] Maruyama Y, Sawada K, Takao H, et al. A novel filterless fluorescence detection sensor for DNA analysis[J]. IEEE Transactions on Electron Devices, 53, 553-558(2006).
[106] Nakazawa H, Ishida M, Sawada K. Multimodal bio-image sensor for real-time proton and fluorescence imaging[J]. Sensors and Actuators B-Chemical, 180, 14-20(2013).
[107] Raissi F, Mirzakuchaki S, Jalili H M, et al. Room-temperature gas-sensing ability of PtSi/porous Si Schottky junctions[J]. Ieee Sensors Journal, 6, 146-150(2006).
[108] Augel L, Berkmann F, Latta D, et al. Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing[J]. Microfluidics and Nanofluidics, 21, 169(2017).
[109] Bora M, Celebi K, Zuniga J, et al. Near field detector for integrated surface plasmon resonance biosensor applications[J]. Optics Express, 17, 329-336(2009).
[110] Park B, Yun S H, Cho C Y, et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors[J]. Light-Science & Applications, 3, e222(2014).
[111] Hu X, Xu G Q, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 10, 962-969(2016).
[112] Liang L, Zheng Q L, Wen L, et al. Miniaturized spectroscopy with tunable and sensitive plasmonic structures[J]. Optics Letters, 46, 4264-4267(2021).
[113] Guyot L, Blanchard-Dionne A P, Patskovsky S, et al. Integrated silicon-based nanoplasmonic sensor[J]. Optics Express, 19, 9962-9967(2011).
[114] Alavirad M, Mousavi S S, Roy L, et al. Schottky-contact plasmonic dipole rectenna concept for biosensing[J]. Optics Express, 21, 4328-4347(2013).
[115] Chen W J, Kan T, Ajiki Y, et al. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR[J]. Optics Express, 24, 25797-25804(2016).
[116] Ajiki Y, Kan T, Matsumoto K, et al. Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode[J]. Applied Physics Express, 11, 022001(2018).
[117] Tsukagoshi T, Kuroda Y, Noda K, et al. Compact surface plasmon resonance system with Au/Si Schottky barrier[J]. Sensors, 18, 399(2018).
[118] Saito Y, Yamamoto Y, Kan T, et al. Electrical detection SPR sensor with grating coupled backside illumination[J]. Optics Express, 27, 17763-17770(2019).
[119] Oshita M, Takahashi H, Ajiki Y, et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever[J]. ACS Photonics, 7, 673-679(2020).
[120] Sammito D, De Salvador D, Zilio P, et al. Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors[J]. Nanoscale, 6, 1390-1397(2014).
[121] Kojori H S, Ji Y W, Paik Y, et al. Monitoring interfacial lectin binding with nanomolar sensitivity using a plasmon field effect transistor[J]. Nanoscale, 8, 17357-17364(2016).
[122] Tan X C, Zhang H, Li J Y, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 11, 5245(2020).
[123] Dao T D, Ishii S, Doan A T, et al. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing[J]. Advanced Science, 6, 1900579(2019).
[124] Wang P, Krasavin A V, Nasir M E, et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials[J]. Nature Nanotechnology, 13, 159-164(2018).
[125] Ciappesoni M, Cho S, Tian J, et al. Computational study for optimization of a plasmon FET as a molecular biosensor[J]. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV, 10506(2018).
[126] [126] Tan X C, Li J Y, Yang A, et al. Narrowb plasmonic metamaterial absber integrated pyroelectric detects towards infrared gas sensing [C]Conference on Lasers ElectroOptics (CLEO), 2018: FF2F. 4.
[127] Wang P, Nasir M E, Krasavin A V, et al. Optoelectronic synapses based on hot-electron-induced chemical processes[J]. Nano Letters, 20, 1536-1541(2020).
[128] Song H Y, Zhang W Y, Li H F, et al. Review of compact computational spectral information acquisition systems[J]. Frontiers of Information Technology & Electronic Engineering, 21, 1119-1133(2020).
[129] Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electronic Engineering, 48, 200183(2021).
Get Citation
Copy Citation Text
Qin Chen, Xianghong Nan, Wenyue Liang, Qilin Zheng, Zhiwei Sun, Long Wen. Research progress of on-chip integrated optical sensing technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210671
Category: Optical communication and sensing
Received: Sep. 14, 2021
Accepted: --
Published Online: Mar. 8, 2022
The Author Email: