Optics and Precision Engineering, Volume. 33, Issue 9, 1456(2025)
Hierarchical feature refinement with frequency-enhanced learning method for nuclei segmentation in spatial omics
[1] VANDEREYKEN K, SIFRIM A, THIENPONT B et al. Methods and applications for single-cell and spatial multi-omics[J]. Nature Reviews Genetics, 24, 494-515(2023).
[2] LIU X J, PENG T, XU M C et al. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications[J]. Journal of Hematology & Oncology, 17, 72(2024).
[3] BRESSAN D, BATTISTONI G, HANNON G J. The dawn of spatial omics[J]. Science, 381(2023).
[4] FISCHER E G. Nuclear morphology and the biology of cancer cells[J]. Acta Cytologica, 64, 511-519(2020).
[5] KOCHETOV B, BELL P D, GARCIA P S et al. UNSEG: unsupervised segmentation of cells and their nuclei in complex tissue samples[J]. Communications Biology, 7, 1062(2024).
[6] CHLIPALA E, BENDZINSKI C M, CHU K et al. Optical density-based image analysis method for the evaluation of hematoxylin and eosin staining precision[J]. Journal of Histotechnology, 43, 29-37(2020).
[7] SONG J, XIAO L, LIAN ZH CH. Cascade sparse convolution and decision tree ensemble model for nuclear segmentation in pathology images[J]. Acta Automatica Sinica, 47, 378-390(2021).
宋杰, 肖亮, 练智超. 级联稀疏卷积与决策树集成的病理图像细胞核分割方法[J]. 自动化学报, 47, 378-390(2021).
[8] MOFFITT J R, BAMBAH-MUKKU D, EICHHORN S W et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region[J]. Science, 362(2018).
[9] LOHOFF T, GHAZANFAR S, MISSAROVA A et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis[J]. Nature Biotechnology, 40, 74-85(2022).
[10] JACKSON H W, FISCHER J R, ZANOTELLI V R T et al. The single-cell pathology landscape of breast cancer[J]. Nature, 578, 615-620(2020).
[11] BERG S, KUTRA D, KROEGER T et al. Ilastik: interactive machine learning for (bio)image analysis[J]. Nature Methods, 16, 1226-1232(2019).
[13] 张伟, 余浩, 袁波. 基于高倍率细胞内镜系统的细胞核分割[J]. 光学 精密工程, 29, 2574-2580(2021).
ZHANG W, YU H, YUAN B et al. Nuclear segmentation based on endocytoscopy system with high magnification[J]. Opt. Precision Eng., 29, 2574-2580(2021).
[14] ARSLAN S, ERSAHIN T, CETIN-ATALAY R et al. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images[J]. IEEE Transactions on Medical Imaging, 32, 1121-1131(2013).
[15] KE J, LU Y Z, SHEN Y Q et al. ClusterSeg: a crowd cluster pinpointed nucleus segmentation framework with cross-modality datasets[J]. Medical Image Analysis, 85, 102758(2023).
[16] LI D X, YANG F J, LIU Y et al. Skin lesion segmentation network with cross-attention coding[J]. Opt. Precision Eng., 32, 609-621(2024).
李大湘, 杨福杰, 刘颖. 融入交叉注意力编码的皮肤病变分割网络[J]. 光学 精密工程, 32, 609-621(2024).
[17] LIANG L M, ZHOU L S, FENG J et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 30, 2021-2038(2022).
梁礼明, 周珑颂, 冯骏. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 30, 2021-2038(2022).
[18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[19] GU Z W, CHENG J, FU H Z et al. CE-net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 38, 2281-2292(2019).
[20] GRAHAM S, VU Q D, RAZA S E A et al. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Medical Image Analysis, 58, 101563(2019).
[21] HÖRST F, REMPE M, HEINE L et al. CellViT: Vision Transformers for precise cell segmentation and classification[J]. Medical Image Analysis, 94, 103143(2024).
[22] CAO H, WANG Y Y, CHEN J et al. Swin-unet: unet-like pure transformer forMedical image segmentation[C], 205-218(2023).
[23] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 82, 35-45(1960).
[24] GU A. Mamba: linear-time sequence modeling with selective state spaces[J]. ArXiv e-Prints(2023).
[25] Ruan J, Xiang S. Vm-unet: Vision mamba unet for medical image segmentation[J]. arXiv preprint(2024).
[26] LI C X, LIU X Y, LI W Y et al. U-KAN makes strong backbone for medical image segmentation and generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 39, 4652-4660(2025).
[27] KUMAR N, VERMA R, ANAND D et al. A multi-organ nucleus segmentation challenge[J]. IEEE Trans Med Imaging, 39, 1380-1391(2020).
[28] KUMAR N, VERMA R, SHARMA S et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Transactions on Medical Imaging, 36, 1550-1560(2017).
[29] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 107, 3-11(2018).
[30] GU A, GOEL K, RÉ C. Efficiently modeling long sequences with structured state spaces[J]. arXiv preprint(2021).
[34] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N et al. UNet++: a nested U-Net architecture for medical image segmentation[J]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 11045, 3-11(2018).
[35] SELVARAJU R, COGSWELL M et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C], 618-626(2017).
Get Citation
Copy Citation Text
Xiuqi LI, Jinze LI, Qi YANG, Yingxue LI, Cairong ZHAO, Lianqun ZHOU, Jia YAO. Hierarchical feature refinement with frequency-enhanced learning method for nuclei segmentation in spatial omics[J]. Optics and Precision Engineering, 2025, 33(9): 1456
Category:
Received: Jan. 9, 2025
Accepted: --
Published Online: Jul. 22, 2025
The Author Email: Lianqun ZHOU (zhoulq@sibet.ac.cn)