Laser & Optoelectronics Progress, Volume. 59, Issue 18, 1810014(2022)
Hyperspectral Image Classification Based on Multi-Scale Feature Fusion Residual Network
Fig. 5. Classification maps for IN dataset. (a) Picture of samples; (b) ground-truth label; (c) classification map of SVM; (d) classification map of 3D CNN; (e) classification map of SSRN; (f) classification map of proposed network
Fig. 6. Classification maps for SA dataset. (a) Picture of samples; (b) ground-truth label; (c) classification map of SVM; (d) classification map of 3D CNN; (e) classification map of SSRN; (f) classification map of proposed network
Fig. 7. Classification maps for UP dataset. (a) Picture of samples; (b) ground-truth label; (c) classification map of SVM; (d) classification map of 3D CNN; (e) classification map of SSRN; (f) classification map of proposed network
|
|
|
|
|
|
Get Citation
Copy Citation Text
Ziqing Deng, Yang Wang, Bing Zhang, Zhao Ding, Lifeng Bian, Chen Yang. Hyperspectral Image Classification Based on Multi-Scale Feature Fusion Residual Network[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1810014
Category: Image Processing
Received: Jun. 15, 2021
Accepted: Aug. 10, 2021
Published Online: Aug. 29, 2022
The Author Email: Chen Yang (eliot.c.yang@163.com)