Chinese Journal of Lasers, Volume. 50, Issue 5, 0513001(2023)

Design and Analysis of Cone-like Structures for Broadband and Wide-Angle Antireflection Enhancement

Jingbo Yin1, Huangping Yan1,2、*, Shengzhu Cao3, Rui Zhou1, Zijun Wang1, and Yuanzhe Li1
Author Affiliations
  • 1School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian , China
  • 2Shenzhen Research Institute of Xiamen University, Shenzhen 518000, Guangdong , China
  • 3Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, Gansu , China
  • show less
    References(26)

    [1] Fu X H, Pan Y G, Liu D M et al. Ultra-broad band anti-reflection coating spectrum detection[J]. Acta Photonica Sinica, 44, 0831001(2015).

    [2] Tommila J, Aho A, Tukiainen A et al. Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell[J]. Progress in Photovoltaics: Research and Applications, 21, 1158-1162(2013).

    [3] Fan P X, Zhong M L. Progress on ultrafast laser fabricating metal surface micro-nano antireflection structures[J]. Infrared and Laser Engineering, 45, 0621001(2016).

    [4] Tian B T, Wang X D, Niu Y Y et al. Sol-gel preparation of graded-refractive-index antireflective coatings for GaInP/GaAs/Ge triple-junction solar cells[J]. Acta Photonica Sinica, 45, 0831001(2016).

    [5] Gao T, Qu Y, Zheng X G et al. Preparation of broadband anti-reflection coating on the end of fiber[J]. Journal of Optoelectronics·Laser, 25, 687-691(2014).

    [6] Li M X, Wang L, Wang M J et al. Application research on multifunction fiber end laser broadband antireflection film[J]. Laser&Infrared, 46, 1279-1283(2016).

    [7] Lin G H, Zhang L, Zhang M. Study on stray radiation of infrared detector Dewar assembly[J]. Laser&Infrared, 48, 1108-1112(2018).

    [8] Fu X H, Lin X M, Zhang G et al. Development of infrared wide band polarizing elements with subwavelength metal wire grids[J]. Chinese Journal of Lasers, 48, 0903002(2021).

    [9] Chattopadhyay S, Huang Y F, Jen Y J et al. Anti-reflecting and photonic nanostructures[J]. Materials Science and Engineering R: Reports, 69, 1-35(2010).

    [10] Peng Y J, Huang H X, Xie H. Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell[J]. Solar Energy Materials and Solar Cells, 171, 98-105(2017).

    [11] Li Y F, Zhang J H, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 5, 117-127(2010).

    [12] Han Z W, Jiao Z B, Niu S C et al. Ascendant bioinspired antireflective materials: opportunities and challenges coexist[J]. Progress in Materials Science, 103, 1-68(2019).

    [13] Oh Y J, Kim J J, Jeong K H. Biologically inspired biophotonic surfaces with self-antireflection[J]. Small, 10, 2558-2563(2014).

    [14] Pan F, Zhang W, Zhang D. Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta Optica Sinica, 36, 0516002(2016).

    [15] Zhang Y T, Xuan Y M. Spectral features of broadband anti-reflection structured surface for Si solar cell[J]. Journal of Engineering Thermophysics, 36, 2689-2693(2015).

    [16] Ge S B, Liu W G, Zhou S et al. Characteristics of near-infrared induced transmission enhancement of thin film micro-structures[J]. Acta Photonica Sinica, 48, 0731001(2019).

    [17] Guo X D, Dong T T, Fu Y G et al. Development of bionic moth-eye anti-reflective conical micro-nano structure[J]. Infrared and Laser Engineering, 46, 0910002(2017).

    [18] Lin H, Fu Y G, Ouyang M Z et al. Design and analysis of moth-eye antireflective metasurface structure with broadband and wide-angle[J]. Chinese Journal of Lasers, 46, 0113002(2019).

    [19] Sun J Y, Wang X B, Wu J H et al. Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic[J]. Scientific Reports, 8, 5438(2018).

    [20] Liu X G, Wang Y F. Shape optimization of moth-eye structure for omnidirectional and broadband antireflection[J]. Japanese Journal of Applied Physics, 58, 060904(2019).

    [21] Yang L Y, Feng Q, Ng B H et al. Hybrid moth-eye structures for enhanced broadband antireflection characteristics[J]. Applied Physics Express, 3, 102602(2010).

    [22] Hui S M, Hua Y Q, Li Z B. Simulation of anti-reflection properties of uniform and hybrid moth-eye structures[J]. Acta Optica Sinica, 39, 0416003(2019).

    [23] Lan J, Chen J S, Xiao Z G et al. Simulation of broadband anti-reflective and bud-shaped moth-eye structure[J]. Acta Optica Sinica, 41, 1416001(2021).

    [24] Stavenga D G, Foletti S, Palasantzas G et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings of the Royal Society B, 273, 661-667(2006).

    [25] Yamada K, Umetani M, Tamura T et al. Antireflective structure imprinted on the surface of optical glass by SiC mold[J]. Applied Surface Science, 255, 4267-4270(2009).

    [26] Song Y M, Jang S J, Yu J S et al. Bioinspired parabola subwavelength structures for improved broadband antireflection[J]. Small, 6, 984-987(2010).

    Tools

    Get Citation

    Copy Citation Text

    Jingbo Yin, Huangping Yan, Shengzhu Cao, Rui Zhou, Zijun Wang, Yuanzhe Li. Design and Analysis of Cone-like Structures for Broadband and Wide-Angle Antireflection Enhancement[J]. Chinese Journal of Lasers, 2023, 50(5): 0513001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: May. 5, 2022

    Accepted: Jun. 20, 2022

    Published Online: Feb. 28, 2023

    The Author Email: Yan Huangping (hpyan@xmu.edu.cn)

    DOI:10.3788/CJL220818

    Topics