Infrared and Laser Engineering, Volume. 54, Issue 8, 20250209(2025)

Dynamic feature aggregation and multi-level collaboration for UAV infrared target instance segmentation

Zifen HE, Qigang WANG, Yinhui ZHANG*, Ying HUANG, Wei PENG, and Guangchen CHEN
Author Affiliations
  • Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    Figures & Tables(14)
    Dynamic feature aggregation and multilevel collaborative segmentation model
    Spatial attention dynamic convolution module
    Feature-aware reorganization upsampling module
    Multi-scale context aggregation feature extraction module
    Case count statistics
    Comparison of segmentation effects
    Heatmap visualization comparison
    • Table 1. Hyperparametric configuration

      View table
      View in Article

      Table 1. Hyperparametric configuration

      ParameterValue
      Epoch300
      Learning rate0.01
      Batch size16
      Weight decay0.0005
    • Table 2. Ablation experiment

      View table
      View in Article

      Table 2. Ablation experiment

      ModelsSDAConvFARUMSFEGFLOPsSize/MBmAP50Inference/ms
      YOLOv8n12.06.867.6%5.5
      Ours112.77.271.8%10.6
      Ours213.07.574.3%14.0
      DFANet13.17.778.4%10.8
    • Table 3. Comparative experiments of different backbone networks

      View table
      View in Article

      Table 3. Comparative experiments of different backbone networks

      ModelsGFLOPsSize/MBmAP50Inference/ms
      ShuffleNetv214.913.268.7%10.9
      MobileNetv310.99.967.5%10.6
      GhostNet6.69.668.9%12.1
      EfficientNet7.57.169.1%11.8
      Ours12.77.271.8%10.6
    • Table 4. Comparison experiments of different dynamic convolutional networks

      View table
      View in Article

      Table 4. Comparison experiments of different dynamic convolutional networks

      ModelsGFLOPsSize/MBmAP50Inference/ms
      SCConv12.16.864.2%8.4
      DySnakeConv12.17.366.1%8.3
      ODConv12.76.868.8%8.4
      DGConv12.96.863.5%9.5
      SADConv12.77.271.8%10.6
    • Table 5. Comparison experiments of different feature pyramids

      View table
      View in Article

      Table 5. Comparison experiments of different feature pyramids

      ModelsGFLOPsSize/MBmAP50Inference/ms
      SPPF12.06.867.6%5.5
      SimSPPF12.16.766.5%3.2
      SAPP11.87.869.3%7.1
      PPM13.410.868.1%10.7
      DAPPM13.511.268.9%12.3
      MSFE12.77.272.6%8.1
    • Table 6. Comparative experiments of different networks

      View table
      View in Article

      Table 6. Comparative experiments of different networks

      ModelsGFLOPsSize/MBmAP50mAP50-95Inference/ms
      YOLACT13.97.462.3%43.4%11.3
      YOLACT++13.17.762.8%45.1%11.7
      YOLOv5n-seg11.88.365.3%44.2%2.6
      YOLOv7-Tiny14.912.565.8%46.1%9.8
      YOLOv8n-seg12.06.867.6%45.5%5.5
      YOLOv8s-seg32.422.777.1%52.5%11.6
      YOLOv11n-seg10.26.072.3%48.0%3.7
      YOLOv11s-seg35.320.576.4%53.3%10.9
      YOLOv12n-seg10.25.871.2%45.9%4.8
      YOLOv12s-seg35.219.376.3%52.8%8.5
      DFANet13.17.778.4%51.1%10.8
    • Table 7. K-value cross-validation experiment

      View table
      View in Article

      Table 7. K-value cross-validation experiment

      K=5mAP50mAP95
      A77.5%50.7%
      B78.9%52.0%
      C79.1%51.8%
      D78.1%50.7%
      E79.6%51.1%
      Average precision78.64%51.26%
      Standard deviation0.78%0.56%
    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Qigang WANG, Yinhui ZHANG, Ying HUANG, Wei PENG, Guangchen CHEN. Dynamic feature aggregation and multi-level collaboration for UAV infrared target instance segmentation[J]. Infrared and Laser Engineering, 2025, 54(8): 20250209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Mar. 4, 2025

    Accepted: --

    Published Online: Aug. 29, 2025

    The Author Email: Yinhui ZHANG (zhangyinhui@kust.edu.cn)

    DOI:10.3788/IRLA20250209

    Topics