Remote Sensing Technology and Application, Volume. 40, Issue 4, 875(2025)
Advances in Remote Sensing Retrieval of Aquatic pCO2
[1] [1] ALLEN M, CONINCK H D, DUBE O P,et al. Technical Summary. In: Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways[R]. https://www.ipcc.ch/sr15, 2018.
[2] [2] FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W,et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301-5369. DOI: 10.5194/essd-15-5301-2023
[3] [3] WANNINKHOF R, PARK G H, TAKAHASHI T,et al. Global ocean carbon uptake: Magnitude, variability and trends[J]. Biogeosciences, 2013, 10(3): 1983-2000. DOI: 10.5194/bg-10-1983-201310.5194/bgd-9-10961-2012
[4] [4] LANDSCHTZER P, GRUBER N, BAKKER D C E,et al. Recent variability of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2014, 28(9): 927-949. DOI: 10.1002/2014GB004853
[5] [5] RAYMOND P A, HARTMANN J, LAUERWALD R,et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. DOI: 10.1038/nature12760
[6] [6] GMEZ-GENER L, ROCHER-ROS G, BATTIN T,et al. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions[J]. Nature Geoscience, 2021, 14(5): 289-294. DOI: 10.1038/s41561-021-00722-3
[7] [7] COLE J J, PRAIRIE Y T, CARACO N F,et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. DOI: 10.1007/s10021-006-9013-8
[8] [8] LISS P S, SLATER P G. Flux of gases across the air-sea interface[J].Nature, 1974, 247(5438): 181-184. DOI: 10.1038/247181a0
[9] [9] TAKAHASHI T, SUTHERLAND S C, SWEENEY C,et al. Global sea-air CO2 flux based on climatological surface oceanpCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1601-1622. DOI: 10.1016/S0967-0645(02)00003-6
[10] [10] JAMET C, MOULIN C, LEFVRE N. Estimation of the oceanicpCO2 in the North Atlantic from VOS linesin situmeasurements: Parameters needed to generate seasonally mean maps[J]. Annales Geophysicae, 2007, 25(11): 2247-2257. DOI: 10.5194/angeo-25-2247-2007
[11] [11] ZSCHEISCHLER J, MAHECHA M D, AVITABILE V,et al. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: Opportunities and data limitations[J]. Biogeosciences, 2017, 14(15): 3685-3703. DOI: 10.5194/bg-14-3685-2017
[12] [12] ZHANG S Q, BAI Y, HE X Q,et al. Spatial and temporal variations in sea surfacepCO2 and air-sea flux of CO2 in the Bering Sea revealed by satellite-based data during 2003-2019[J]. Frontiers in Marine Science, 2023, 10: 1099916. DOI: 10.3389/fmars.2023.1099916
[13] [13] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2008, 2(1): 37-41. DOI: 10.1038/ngeo391
[14] [14] OUYANG Z T, SHAO C L, CHU H S,et al. The effect of algal blooms on carbon emissions in western Lake Erie: An integration of remote sensing and eddy covariance measurements[J]. Remote Sensing, 2017, 9(1): 44. DOI: 10.3390/rs9010044
[15] [15] MILLERO F J. Thermodynamics of the carbon dioxide system in the oceans[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 661-677. DOI: 10.1016/0016-7037(94)00354-O
[16] [16] MILLERO F J. The marine inorganic carbon cycle[J]. Chemical Reviews, 2007, 107(2): 308-341. DOI: 10.1021/cr0503557
[17] [17] TAKAHASHI T, OLAFSSON J, GODDARD J G,et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeochemical Cycles, 1993, 7(4): 843-878. DOI: 10.1029/93gb02263
[18] [18] ATAMANCHUK D, KONONETS M, THOMAS P J,et al. Continuous long-term observations of the carbonate system dynamics in the water column of a temperate fjord[J]. Journal of Marine Systems, 2015, 148: 272-284. DOI: 10.1016/j.jmarsys.2015.03.002
[19] [19] TAKESHITA Y, JOHNSON K S, MARTZ T R,et al. Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4003-4013. DOI: 10. 1029/2017jc013387
[20] [20] BAI Y, CAI W J, HE X Q,et al. A mechanistic semi-analytical method for remotely sensing sea surface p river-dominated coastal oceans: A case study from theEastChinaSea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331-2349. DOI: 10.1002/2014jc010632
[21] [21] FAY A R, MCKINLEY G A. Correlations of surface oceanpCO2 to satellite chlorophyll on monthly to interannual times-cales[J]. Global Biogeochemical Cycles, 2017, 31(3): 436-455. DOI: 10.1002/2016gb005563
[22] [22] QI T C, SHEN M, KUTSER T,et al. Remote sensing of dissolved CO2 concentrations in meso-eutrophic lakes using Sentinel-3 imagery[J]. Remote Sensing of Environment 2023, 286: 113431. DOI: 10.1016/j.rse.2022.113431
[23] [23] LIU Q, DONG X, CHEN J S,et al. Diurnal to interannual variability of sea surfacepCO2 and its controls in a turbid tidal-driven nearshore system in the vicinity of the East China Sea based on buoy observations[J]. Marine Chemistry, 2019, 216: 103690. DOI: 10.1016/j.marchem.2019.103690
[24] [24] MARREC P, CARIOU T, MAC E,et al. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations[J]. Biogeosciences, 2015, 12(18): 5371-5391. DOI: 10.5194/bg-12-5371-2015
[25] [25] TAKAO S, NAKAOKA S I, HASHIHAMA F,et al. Effects of phytoplankton community composition and productivity on sea surfacepCO2 variations in the Southern Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 160: 103263. DOI: 10.1016/j.dsr.2020.103263
[26] [26] WANG Y Q, WANG K, BAI Y,et al. Research progress in calculating net community production of marine ecosystem by remote sensing[J]. Frontiers in Marine Science, 2023, 10: 1191013. DOI: 10.3389/fmars.2023.1191013
[27] [27] FORD D J, TILSTONE G H, SHUTLER J D,et al. Derivation of seawaterpCO2 from net community production identifies the South Atlantic Ocean as a CO2 source[J]. Biogeosciences, 2022, 19(1): 93-115. DOI: 10.5194/bg-19-93-2022
[28] [28] CHEN S L, SUTTON A J, HU C M,et al. Quantifying the atmospheric CO2 forcing effect on surface oceanpCO2 in the north Pacific subtropical gyre in the past two decades[J]. Frontiers in Marine Science, 2021, 8: 636881. DOI: 10.3389/fmars.2021.636881
[29] [29] TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R,et al. Climatological mean and decadal change in surface oceanpCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/9/10): 554-577. DOI: 10.1016/j.dsr2. 2008.12.009
[30] [30] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373-7382. DOI: 10.1029/92jc00188
[31] [31] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351-362. DOI: 10.4319/lom.2014.12.351
[32] [32] WANNINKHOF R, MCGILLIS W R. A cubic relationship between air-sea CO2 exchange and wind speed[J]. Geophysical Research Letters, 1999, 26(13): 1889-1892. DOI: 10.1029/1999gl900363
[33] [33] SARMA V V S S, PAUL Y S, VANI D G,et al. Impact of river discharge on the coastal water pH andpCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal[J]. Continental Shelf Research, 2015, 107: 132-140. DOI: 10.1016/j.csr.2015.07.015
[34] [34] MU L Q, DO ROSARIO GOMES H, BURNS S M,et al. Temporal variability of air-sea CO2 flux in the western tropical north Atlantic influenced by the Amazon River plume[J]. Global Biogeochemical Cycles, 2021, 35(6): e2020GB006798. DOI: 10.1029/2020gb006798
[35] [35] DENFELD B A, FREY K E, SOBCZAK W V,et al. Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia[J]. Polar Research, 2013, 32(1): 19704. DOI: 10.3402/polar.v32i0.19704
[36] [36] VALERIO A M, KAMPEL M, VANTREPOTTE V,et al. Using CDOM optical properties for estimating DOC concentrations andpCO2 in the Lower Amazon River[J]. Optics Express, 2018, 26(14): A657-A677. DOI: 10.1364/OE. 26.00A657
[37] [37] SOBEK S, TRANVIK L J, COLE J J. Temperature independence of carbon dioxide supersaturation in global lakes[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2003. DOI: 10.1029/2004GB002264
[38] [38] LAPIERRE J F, DEL GIORGIO P A. Geographical and environmental drivers of regional differences in the lakepCO2 versus DOC relationship across northern landscapes[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G3): 2012JG001945. DOI: 10.1029/2012jg001945
[39] [39] LARSEN S, ANDERSEN T, HESSEN D O. ThepCO2 in boreal lakes: Organic carbon as a universal predictor?[J]. Global Biogeochemical Cycles, 2011, 25(2): n/a. DOI: 10.1029/2010gb003864
[40] [40] WEN Z D, SONG K S, SHANG Y X,et al. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculatedpCO2[J]. Atmospheric Environment, 2017, 170: 71-81. DOI: 10.1016/j.atmosenv. 2017.09.032
[41] [41] LI X Y, SHI F Z, MA Y J,et al. Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau[J]. Global Change Biology, 2022, 28(6): 2041-2052. DOI: 10.1111/gcb.16054
[42] [42] STEPHENS M P, SAMUELS G, OLSON D B,et al. Seaair flux of CO2 in the North Pacific using shipboard and satellite data[J]. Journal of Geophysical Research: Oceans, 1995, 100(C7): 13571-13583. DOI: 10.1029/95jc00901
[43] [43] RANGAMA Y, BOUTIN J, ETCHETO J,et al. Variability of the net air-sea CO2 flux inferred from shipboard and satellite measurements in the Southern Ocean south of Tasmania and New Zealand[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): 2004JC002619. DOI: 10.1029/2004jc002619
[44] [44] SARMA V V S S, SAINO T, SASAOKA K,et al. Basinscale pCO2 distribution using satellite sea surface temperature, Chla, and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochemical Cycles, 2006, 20(3): 2005GB002594. DOI: 10.1029/2005gb002594
[45] [45] KRISHNA K V, SHANMUGAM P, NAGAMANI P V. A multiparametric nonlinear regression approach for the estimation of global surface oceanpCO2 using satellite oceanographic data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6220-6235. DOI: 10.1109/JSTARS.2020.3026363
[46] [46] ONO T, SAINO T, KURITA N,et al. Basin-scale extrapolation of shipboardpCO2 data by using satellite SST and Chla[J]. International Journal of Remote Sensing, 2004, 25(19): 3803-3815. DOI: 10.1080/01431160310001657515
[47] [47] LEFEVRE N, WATSON A J, WATSON A R. A comparison of multiple regression and neural network techniques for mapping in situpCO2 data[J]. Tellus B, 2005, 57(5): 375-384. DOI: 10.1111/j.1600-0889.2005.00164.x
[48] [48] SUN H W, HE J Y, CHEN Y H,et al. Space-time sea surfacepCO2 estimation in the north Atlantic based on Cat Boost[J]. Remote Sensing, 2021, 13(14): 2805. DOI: 10.3390/rs13142805
[49] [49] FRIEDRICH T, OSCHLIES A. Neural network-based estimates of North Atlantic surfacepCO2 from satellite data: A methodological study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): 2007JC004646. DOI: 10.1029/2007 jc004646
[50] [50] TELSZEWSKI M, CHAZOTTES A, SCHUSTER U,et al. Estimating the monthlypCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405-1421. DOI: 10.5194/bg-6-1405-2009
[51] [51] MOUSSA H, BENALLAL M A, GOYET C,et al. Satellite-derived CO2fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network[J]. International Journal of Remote Sensing, 2016, 37(3): 580-598. DOI: 10.1080/01431161.2015.1131872
[52] [52] JO Y H, DAI M H, ZHAI W D,et al. On the variations of sea surfacepCO2 in the northern South China Sea: A remote sensing based neural network approach[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): 2011JC007745. DOI: 10.1029/2011jc007745
[53] [53] FRIEDRICH T, OSCHLIES A. Basin-scale pCO2 maps estimated from ARGO float data: A model study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): 2009JC005322. DOI: 10.1029/2009jc005322
[54] [54] CHEN S L, HU C M, BARNES B B,et al. A machine learning approach to estimate surface oceanpCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203-226. DOI: 10.1016/j.rse.2019.04.019
[55] [55] PARARD G, CHARANTONIS A A, RUTGERSON A. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology[J]. Biogeosciences, 2015, 12(11): 3369-3384. DOI: 10.5194/bg-12-3369-2015
[56] [56] ZHANG S P, RUTGERSSON A, PHILIPSON P,et al. Remote sensing supported sea surfacepCO2 estimation and variable analysis in the Baltic Sea[J]. Remote Sensing, 2021, 13(2): 259. DOI: 10.3390/rs13020259
[57] [57] JOSHI A P, KUMAR V, WARRIOR H V. Modeling the sea-surfacepCO2 of the central Bay of Bengal region using machine learning algorithms[J]. Ocean Modelling, 2022, 178: 102094. DOI: 10.1016/j.ocemod.2022.102094
[58] [58] HALES B, STRUTTON P G, SARACENO M,et al. Satellite-based prediction ofpCO2 in coastal waters of the eastern North Pacific[J]. Progress in Oceanography, 2012, 103: 1-15. DOI: 10.1016/j.pocean.2012.03.001
[59] [59] LE C F, GAO Y Y, CAI W J,et al. Estimating summer sea surfacepCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model[J]. Remote Sensing of Environment, 2019, 225: 115-126. DOI: 10.1016/j.rse.2019.02.023
[60] [60] WANG Z X, WANG G Z, GUO X H,et al. Spatial reconstruction of long-term (2003-2020) sea surfacepCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis[J]. Earth System Science Data, 2023, 15(4): 1711-1731. DOI: 10.5194/essd-15-1711-2023
[61] [61] YU S J, SONG Z G, BAI Y,et al. Satellite-estimated airsea CO2 fluxes in the Bohai Sea, Yellow Sea, and East China Sea: Patterns and variations during 2003-2019[J]. Science of The Total Environment, 2023, 904: 166804. DOI: 10.1016/j.scitotenv.2023.166804
[62] [62] FU Z Y, HU L S, CHEN Z D,et al. Estimating spatial and temporal variation in ocean surfacepCO2 in the Gulf of Mexico using remote sensing and machine learning techniques[J]. Science of The Total Environment, 2020, 745: 140965. DOI: 10.1016/j.scitotenv.2020.140965
[63] [63] ZHANG S Q, BAI Y, HE X Q,et al. The carbon sink of the Coral Sea, the world's second largest marginal sea, weakened during 2006-2018[J]. Science of The Total Environment, 2023, 872: 162219. DOI: 10.1016/j.scitotenv. 2023.162219
[64] [64] SONG X L, BAI Y, CAI W-J,et al. Remote sensing of sea surfacepCO2 in the Bering Sea in summer based on a Mechanistic Semi-Analytical Algorithm (MeSAA)[J].Remote Sensing, 2016, 8(7): 558. DOI: 10.3390/rs8070558
[65] [65] PARARD G, CHARANTONIS A A, RUTGERSSON A. Using satellite data to estimate partial pressure of CO2 in the Baltic Sea[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 1002-1015. DOI: 10.1002/2015jg003064
[66] [66] WEN Z D, SHANG Y X, LYU L L,et al. A review of quantifying pCO2 in inland waters with a global perspective: Challenges and prospects of implementing remote sensing technology[J].Remote Sensing, 2021, 13(23): 4916. DOI: 10.3390/rs13234916
[67] [67] MARTINSEN K T, KRAGH T, SAND-JENSEN K. Carbon dioxide partial pressure and emission throughout the Scandinavian stream network[J]. Global Biogeochemical Cycles, 2020, 34(12): e2020GB006703. DOI: 10.1029/2020gb006703
[68] [68] KLAUS M, GEIBRINK E, HOTCHKISS E R,et al. Listening to air-water gas exchange in running waters[J]. Limnology and Oceanography: Methods, 2019, 17(7): 395-414. DOI: 10.1002/lom3.10321
[69] [69] WEN Z D, SONG K S, ZHAO Y,et al. Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, Northeastern China[J]. Atmospheric Environment, 2016, 138: 65-73. DOI: 10.1016/j.atmosenv.2016.05.009
[70] [70] XU Y J, XU Z, YANG R J. Rapid daily change in surface waterpCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA[J]. Journal of Hydrology, 2019, 570: 486-494. DOI: 10.1016/j.jhydrol.2019.01.016
[71] [71] YANG R J, XU Z, LIU S L,et al. DailypCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake[J]. Water Research, 2019, 153: 29-38. DOI: 10.1016/j.watres. 2019.01.012
[72] [72] MAROTTA H, PINHO L, GUDASZ C,et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming[J]. Nature Climate Change, 2014, 4(6): 467-470. DOI: 10.1038/nclimate2222
[73] [73] JUNGER P C, DA COSTA CATOMB DANTAS F, NOBRE R L G,et al. Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs[J]. Science of The Total Environment, 2019, 664: 283-295. DOI: 10.1016/j.scitotenv.2019.01.273
[74] [74] DAVIDSON C W. Spatial and temporal variability of coastal carbonate chemistry in the southern California region[D].2015: University of California, San Diego.
[75] [75] PODGRAJSEK E, SAHLE E, RUTGERSSON A. Diel cycle of lake-air CO2 flux from a shallow lake and the impact of waterside convection on the transfer velocity[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1): 29-38. DOI: 10.1002/2014jg002781
[77] [77] CZIKOWSKY M J, MACINTYRE S, TEDFORD E W,et al. Effects of wind and buoyancy on carbon dioxide distribution and air-water flux of a stratified temperate lake[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2305-2322. DOI: 10.1029/2017jg004209
[78] [78] GU B H, SCHELSKE C L, COVENEY M F. Low carbon dioxide partial pressure in a productive subtropical lake[J]. Aquatic Sciences, 2011, 73(3): 317-330. DOI: 10.1007/s00027-010-0179-y
[79] [79] DUAN H T, XIAO Q T, QI T C. Measuring lake carbon dioxide from space: Opportunities and challenges[J]. The Innovation Geoscience, 2023, 1(2): 100025. DOI: 10.59717/j.xinn-geo.2023.100025
[80] [80] QI T C, XIAO Q T, CAO Z G,et al. Satellite estimation of dissolved carbon dioxide concentrations in China's Lake Taihu[J]. Environmental Science & Technology, 2020, 54(21): 13709-13718. DOI: 10.1021/acs.est.0c04044
[81] [81] ZHAO R X, YANG Q, WEN Z D,et al. Satellite estimation ofpCO2 and quantification of CO2 fluxes in China's Chagan Lake in the context of climate change[J]. Remote Sensing, 2023, 15(24): 5680. DOI: 10.3390/rs15245680
[82] [82] KUTSER T, VERPOORTER C, PAAVEL B,et al. Estimating lake carbon fractions from remote sensing data[J]. Remote Sensing of Environment, 2015, 157: 138-146. DOI: 10.1016/j.rse.2014.05.020
[84] [84] XUE L, CAI W J, HU X P,et al. Sea surface carbon dioxide at the Georgia time series site(2006-2007): Air-sea flux and controlling processes[J]. Progress in Oceanography, 2016, 140: 14-26. DOI: 10.1016/j.pocean.2015.09.008
[85] [85] HOLGERSON M A, RAYMOND P A. Large contribution to inland water CO2 and CH4 emissions from very small ponds[J]. Nature Geoscience, 2016, 9(3): 222-226. DOI: 10.1038/ngeo2654
[86] [86] LAUERWALD R, LARUELLE G G, HARTMANN J,et al. Spatial patterns in CO2 evasion from the global river network[J]. Global Biogeochemical Cycles, 2015, 29(5): 534-554. DOI: 10.1002/2014gb004941
[87] [87] LIU H P, ZHANG Q Y, KATUL G G,et al. Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir[J]. Environmental Research Letters, 2016, 11(6): 064001. DOI: 10.1088/1748-9326/11/6/064001
[88] [88] RAN L S, YUE R, SHI H Y,et al. Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir[J]. Journal of Hydrology, 2022, 608: 127652. DOI: 10.1016/j.jhydrol.2022.127652
[89] [89] JONSSON A, BERG J, JANSSON M. Variations inpCO2 during summer in the surfacewater of an unproductive lake in Northern Sweden[J].Tellus B: Chemical and Physical Meteorology, 2022, 59(5): 797. DOI: 10.1111/j.1600-0889. 2007. 00307.x
[90] [90] MORIN T H, REY-SNCHEZ A C, VOGEL C S,et al. Carbon dioxide emissions from an oligotrophic temperate lake: An eddy covariance approach[J]. Ecological Engineering, 2018, 114: 25-33. DOI: 10.1016/j.ecoleng.2017.05.005
[91] [91] SHAO C L, CHEN J Q, STEPIEN C A,et al. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1587-1604. DOI: 10.1002/2015jg003025
[92] [92] SONG L P, LEE Z P, SHANG S L,et al. On the spatial and temporal variations of primary production in the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4201514. DOI: 10.1109/TGRS. 2023. 3241209
[93] [93] LIU W T, XIE X S. Space observation of carbon dioxide partial pressure at ocean surface[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5472-5484. DOI: 10.1109/JSTARS.2017.2766138
Get Citation
Copy Citation Text
LIU Shiwei, SONG Kaishan, XIONG Chunlan, LIU Ge, TAO Hui, SHANG Yingxin, WEN Zhidan. Advances in Remote Sensing Retrieval of Aquatic pCO2[J]. Remote Sensing Technology and Application, 2025, 40(4): 875
Received: Mar. 18, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: WEN Zhidan (wenzhidan@iga.ac.cn)