Remote Sensing Technology and Application, Volume. 40, Issue 4, 875(2025)

Advances in Remote Sensing Retrieval of Aquatic pCO2

LIU Shiwei1,2, SONG Kaishan1, XIONG Chunlan1,2, LIU Ge1, TAO Hui1, SHANG Yingxin1, and WEN Zhidan1、*
Author Affiliations
  • 1Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
  • 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(91)

    [1] [1] ALLEN M, CONINCK H D, DUBE O P,et al. Technical Summary. In: Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways[R]. https://www.ipcc.ch/sr15, 2018.

    [2] [2] FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W,et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301-5369. DOI: 10.5194/essd-15-5301-2023

    [3] [3] WANNINKHOF R, PARK G H, TAKAHASHI T,et al. Global ocean carbon uptake: Magnitude, variability and trends[J]. Biogeosciences, 2013, 10(3): 1983-2000. DOI: 10.5194/bg-10-1983-201310.5194/bgd-9-10961-2012

    [4] [4] LANDSCHTZER P, GRUBER N, BAKKER D C E,et al. Recent variability of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2014, 28(9): 927-949. DOI: 10.1002/2014GB004853

    [5] [5] RAYMOND P A, HARTMANN J, LAUERWALD R,et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. DOI: 10.1038/nature12760

    [6] [6] GMEZ-GENER L, ROCHER-ROS G, BATTIN T,et al. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions[J]. Nature Geoscience, 2021, 14(5): 289-294. DOI: 10.1038/s41561-021-00722-3

    [7] [7] COLE J J, PRAIRIE Y T, CARACO N F,et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. DOI: 10.1007/s10021-006-9013-8

    [8] [8] LISS P S, SLATER P G. Flux of gases across the air-sea interface[J].Nature, 1974, 247(5438): 181-184. DOI: 10.1038/247181a0

    [9] [9] TAKAHASHI T, SUTHERLAND S C, SWEENEY C,et al. Global sea-air CO2 flux based on climatological surface oceanpCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1601-1622. DOI: 10.1016/S0967-0645(02)00003-6

    [10] [10] JAMET C, MOULIN C, LEFVRE N. Estimation of the oceanicpCO2 in the North Atlantic from VOS linesin situmeasurements: Parameters needed to generate seasonally mean maps[J]. Annales Geophysicae, 2007, 25(11): 2247-2257. DOI: 10.5194/angeo-25-2247-2007

    [11] [11] ZSCHEISCHLER J, MAHECHA M D, AVITABILE V,et al. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: Opportunities and data limitations[J]. Biogeosciences, 2017, 14(15): 3685-3703. DOI: 10.5194/bg-14-3685-2017

    [12] [12] ZHANG S Q, BAI Y, HE X Q,et al. Spatial and temporal variations in sea surfacepCO2 and air-sea flux of CO2 in the Bering Sea revealed by satellite-based data during 2003-2019[J]. Frontiers in Marine Science, 2023, 10: 1099916. DOI: 10.3389/fmars.2023.1099916

    [13] [13] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2008, 2(1): 37-41. DOI: 10.1038/ngeo391

    [14] [14] OUYANG Z T, SHAO C L, CHU H S,et al. The effect of algal blooms on carbon emissions in western Lake Erie: An integration of remote sensing and eddy covariance measurements[J]. Remote Sensing, 2017, 9(1): 44. DOI: 10.3390/rs9010044

    [15] [15] MILLERO F J. Thermodynamics of the carbon dioxide system in the oceans[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 661-677. DOI: 10.1016/0016-7037(94)00354-O

    [16] [16] MILLERO F J. The marine inorganic carbon cycle[J]. Chemical Reviews, 2007, 107(2): 308-341. DOI: 10.1021/cr0503557

    [17] [17] TAKAHASHI T, OLAFSSON J, GODDARD J G,et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeochemical Cycles, 1993, 7(4): 843-878. DOI: 10.1029/93gb02263

    [18] [18] ATAMANCHUK D, KONONETS M, THOMAS P J,et al. Continuous long-term observations of the carbonate system dynamics in the water column of a temperate fjord[J]. Journal of Marine Systems, 2015, 148: 272-284. DOI: 10.1016/j.jmarsys.2015.03.002

    [19] [19] TAKESHITA Y, JOHNSON K S, MARTZ T R,et al. Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4003-4013. DOI: 10. 1029/2017jc013387

    [20] [20] BAI Y, CAI W J, HE X Q,et al. A mechanistic semi-analytical method for remotely sensing sea surface p river-dominated coastal oceans: A case study from theEastChinaSea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331-2349. DOI: 10.1002/2014jc010632

    [21] [21] FAY A R, MCKINLEY G A. Correlations of surface oceanpCO2 to satellite chlorophyll on monthly to interannual times-cales[J]. Global Biogeochemical Cycles, 2017, 31(3): 436-455. DOI: 10.1002/2016gb005563

    [22] [22] QI T C, SHEN M, KUTSER T,et al. Remote sensing of dissolved CO2 concentrations in meso-eutrophic lakes using Sentinel-3 imagery[J]. Remote Sensing of Environment 2023, 286: 113431. DOI: 10.1016/j.rse.2022.113431

    [23] [23] LIU Q, DONG X, CHEN J S,et al. Diurnal to interannual variability of sea surfacepCO2 and its controls in a turbid tidal-driven nearshore system in the vicinity of the East China Sea based on buoy observations[J]. Marine Chemistry, 2019, 216: 103690. DOI: 10.1016/j.marchem.2019.103690

    [24] [24] MARREC P, CARIOU T, MAC E,et al. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations[J]. Biogeosciences, 2015, 12(18): 5371-5391. DOI: 10.5194/bg-12-5371-2015

    [25] [25] TAKAO S, NAKAOKA S I, HASHIHAMA F,et al. Effects of phytoplankton community composition and productivity on sea surfacepCO2 variations in the Southern Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 160: 103263. DOI: 10.1016/j.dsr.2020.103263

    [26] [26] WANG Y Q, WANG K, BAI Y,et al. Research progress in calculating net community production of marine ecosystem by remote sensing[J]. Frontiers in Marine Science, 2023, 10: 1191013. DOI: 10.3389/fmars.2023.1191013

    [27] [27] FORD D J, TILSTONE G H, SHUTLER J D,et al. Derivation of seawaterpCO2 from net community production identifies the South Atlantic Ocean as a CO2 source[J]. Biogeosciences, 2022, 19(1): 93-115. DOI: 10.5194/bg-19-93-2022

    [28] [28] CHEN S L, SUTTON A J, HU C M,et al. Quantifying the atmospheric CO2 forcing effect on surface oceanpCO2 in the north Pacific subtropical gyre in the past two decades[J]. Frontiers in Marine Science, 2021, 8: 636881. DOI: 10.3389/fmars.2021.636881

    [29] [29] TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R,et al. Climatological mean and decadal change in surface oceanpCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/9/10): 554-577. DOI: 10.1016/j.dsr2. 2008.12.009

    [30] [30] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373-7382. DOI: 10.1029/92jc00188

    [31] [31] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351-362. DOI: 10.4319/lom.2014.12.351

    [32] [32] WANNINKHOF R, MCGILLIS W R. A cubic relationship between air-sea CO2 exchange and wind speed[J]. Geophysical Research Letters, 1999, 26(13): 1889-1892. DOI: 10.1029/1999gl900363

    [33] [33] SARMA V V S S, PAUL Y S, VANI D G,et al. Impact of river discharge on the coastal water pH andpCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal[J]. Continental Shelf Research, 2015, 107: 132-140. DOI: 10.1016/j.csr.2015.07.015

    [34] [34] MU L Q, DO ROSARIO GOMES H, BURNS S M,et al. Temporal variability of air-sea CO2 flux in the western tropical north Atlantic influenced by the Amazon River plume[J]. Global Biogeochemical Cycles, 2021, 35(6): e2020GB006798. DOI: 10.1029/2020gb006798

    [35] [35] DENFELD B A, FREY K E, SOBCZAK W V,et al. Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia[J]. Polar Research, 2013, 32(1): 19704. DOI: 10.3402/polar.v32i0.19704

    [36] [36] VALERIO A M, KAMPEL M, VANTREPOTTE V,et al. Using CDOM optical properties for estimating DOC concentrations andpCO2 in the Lower Amazon River[J]. Optics Express, 2018, 26(14): A657-A677. DOI: 10.1364/OE. 26.00A657

    [37] [37] SOBEK S, TRANVIK L J, COLE J J. Temperature independence of carbon dioxide supersaturation in global lakes[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2003. DOI: 10.1029/2004GB002264

    [38] [38] LAPIERRE J F, DEL GIORGIO P A. Geographical and environmental drivers of regional differences in the lakepCO2 versus DOC relationship across northern landscapes[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G3): 2012JG001945. DOI: 10.1029/2012jg001945

    [39] [39] LARSEN S, ANDERSEN T, HESSEN D O. ThepCO2 in boreal lakes: Organic carbon as a universal predictor?[J]. Global Biogeochemical Cycles, 2011, 25(2): n/a. DOI: 10.1029/2010gb003864

    [40] [40] WEN Z D, SONG K S, SHANG Y X,et al. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculatedpCO2[J]. Atmospheric Environment, 2017, 170: 71-81. DOI: 10.1016/j.atmosenv. 2017.09.032

    [41] [41] LI X Y, SHI F Z, MA Y J,et al. Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau[J]. Global Change Biology, 2022, 28(6): 2041-2052. DOI: 10.1111/gcb.16054

    [42] [42] STEPHENS M P, SAMUELS G, OLSON D B,et al. Seaair flux of CO2 in the North Pacific using shipboard and satellite data[J]. Journal of Geophysical Research: Oceans, 1995, 100(C7): 13571-13583. DOI: 10.1029/95jc00901

    [43] [43] RANGAMA Y, BOUTIN J, ETCHETO J,et al. Variability of the net air-sea CO2 flux inferred from shipboard and satellite measurements in the Southern Ocean south of Tasmania and New Zealand[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): 2004JC002619. DOI: 10.1029/2004jc002619

    [44] [44] SARMA V V S S, SAINO T, SASAOKA K,et al. Basinscale pCO2 distribution using satellite sea surface temperature, Chla, and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochemical Cycles, 2006, 20(3): 2005GB002594. DOI: 10.1029/2005gb002594

    [45] [45] KRISHNA K V, SHANMUGAM P, NAGAMANI P V. A multiparametric nonlinear regression approach for the estimation of global surface oceanpCO2 using satellite oceanographic data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6220-6235. DOI: 10.1109/JSTARS.2020.3026363

    [46] [46] ONO T, SAINO T, KURITA N,et al. Basin-scale extrapolation of shipboardpCO2 data by using satellite SST and Chla[J]. International Journal of Remote Sensing, 2004, 25(19): 3803-3815. DOI: 10.1080/01431160310001657515

    [47] [47] LEFEVRE N, WATSON A J, WATSON A R. A comparison of multiple regression and neural network techniques for mapping in situpCO2 data[J]. Tellus B, 2005, 57(5): 375-384. DOI: 10.1111/j.1600-0889.2005.00164.x

    [48] [48] SUN H W, HE J Y, CHEN Y H,et al. Space-time sea surfacepCO2 estimation in the north Atlantic based on Cat Boost[J]. Remote Sensing, 2021, 13(14): 2805. DOI: 10.3390/rs13142805

    [49] [49] FRIEDRICH T, OSCHLIES A. Neural network-based estimates of North Atlantic surfacepCO2 from satellite data: A methodological study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): 2007JC004646. DOI: 10.1029/2007 jc004646

    [50] [50] TELSZEWSKI M, CHAZOTTES A, SCHUSTER U,et al. Estimating the monthlypCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405-1421. DOI: 10.5194/bg-6-1405-2009

    [51] [51] MOUSSA H, BENALLAL M A, GOYET C,et al. Satellite-derived CO2fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network[J]. International Journal of Remote Sensing, 2016, 37(3): 580-598. DOI: 10.1080/01431161.2015.1131872

    [52] [52] JO Y H, DAI M H, ZHAI W D,et al. On the variations of sea surfacepCO2 in the northern South China Sea: A remote sensing based neural network approach[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): 2011JC007745. DOI: 10.1029/2011jc007745

    [53] [53] FRIEDRICH T, OSCHLIES A. Basin-scale pCO2 maps estimated from ARGO float data: A model study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): 2009JC005322. DOI: 10.1029/2009jc005322

    [54] [54] CHEN S L, HU C M, BARNES B B,et al. A machine learning approach to estimate surface oceanpCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203-226. DOI: 10.1016/j.rse.2019.04.019

    [55] [55] PARARD G, CHARANTONIS A A, RUTGERSON A. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology[J]. Biogeosciences, 2015, 12(11): 3369-3384. DOI: 10.5194/bg-12-3369-2015

    [56] [56] ZHANG S P, RUTGERSSON A, PHILIPSON P,et al. Remote sensing supported sea surfacepCO2 estimation and variable analysis in the Baltic Sea[J]. Remote Sensing, 2021, 13(2): 259. DOI: 10.3390/rs13020259

    [57] [57] JOSHI A P, KUMAR V, WARRIOR H V. Modeling the sea-surfacepCO2 of the central Bay of Bengal region using machine learning algorithms[J]. Ocean Modelling, 2022, 178: 102094. DOI: 10.1016/j.ocemod.2022.102094

    [58] [58] HALES B, STRUTTON P G, SARACENO M,et al. Satellite-based prediction ofpCO2 in coastal waters of the eastern North Pacific[J]. Progress in Oceanography, 2012, 103: 1-15. DOI: 10.1016/j.pocean.2012.03.001

    [59] [59] LE C F, GAO Y Y, CAI W J,et al. Estimating summer sea surfacepCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model[J]. Remote Sensing of Environment, 2019, 225: 115-126. DOI: 10.1016/j.rse.2019.02.023

    [60] [60] WANG Z X, WANG G Z, GUO X H,et al. Spatial reconstruction of long-term (2003-2020) sea surfacepCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis[J]. Earth System Science Data, 2023, 15(4): 1711-1731. DOI: 10.5194/essd-15-1711-2023

    [61] [61] YU S J, SONG Z G, BAI Y,et al. Satellite-estimated airsea CO2 fluxes in the Bohai Sea, Yellow Sea, and East China Sea: Patterns and variations during 2003-2019[J]. Science of The Total Environment, 2023, 904: 166804. DOI: 10.1016/j.scitotenv.2023.166804

    [62] [62] FU Z Y, HU L S, CHEN Z D,et al. Estimating spatial and temporal variation in ocean surfacepCO2 in the Gulf of Mexico using remote sensing and machine learning techniques[J]. Science of The Total Environment, 2020, 745: 140965. DOI: 10.1016/j.scitotenv.2020.140965

    [63] [63] ZHANG S Q, BAI Y, HE X Q,et al. The carbon sink of the Coral Sea, the world's second largest marginal sea, weakened during 2006-2018[J]. Science of The Total Environment, 2023, 872: 162219. DOI: 10.1016/j.scitotenv. 2023.162219

    [64] [64] SONG X L, BAI Y, CAI W-J,et al. Remote sensing of sea surfacepCO2 in the Bering Sea in summer based on a Mechanistic Semi-Analytical Algorithm (MeSAA)[J].Remote Sensing, 2016, 8(7): 558. DOI: 10.3390/rs8070558

    [65] [65] PARARD G, CHARANTONIS A A, RUTGERSSON A. Using satellite data to estimate partial pressure of CO2 in the Baltic Sea[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 1002-1015. DOI: 10.1002/2015jg003064

    [66] [66] WEN Z D, SHANG Y X, LYU L L,et al. A review of quantifying pCO2 in inland waters with a global perspective: Challenges and prospects of implementing remote sensing technology[J].Remote Sensing, 2021, 13(23): 4916. DOI: 10.3390/rs13234916

    [67] [67] MARTINSEN K T, KRAGH T, SAND-JENSEN K. Carbon dioxide partial pressure and emission throughout the Scandinavian stream network[J]. Global Biogeochemical Cycles, 2020, 34(12): e2020GB006703. DOI: 10.1029/2020gb006703

    [68] [68] KLAUS M, GEIBRINK E, HOTCHKISS E R,et al. Listening to air-water gas exchange in running waters[J]. Limnology and Oceanography: Methods, 2019, 17(7): 395-414. DOI: 10.1002/lom3.10321

    [69] [69] WEN Z D, SONG K S, ZHAO Y,et al. Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, Northeastern China[J]. Atmospheric Environment, 2016, 138: 65-73. DOI: 10.1016/j.atmosenv.2016.05.009

    [70] [70] XU Y J, XU Z, YANG R J. Rapid daily change in surface waterpCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA[J]. Journal of Hydrology, 2019, 570: 486-494. DOI: 10.1016/j.jhydrol.2019.01.016

    [71] [71] YANG R J, XU Z, LIU S L,et al. DailypCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake[J]. Water Research, 2019, 153: 29-38. DOI: 10.1016/j.watres. 2019.01.012

    [72] [72] MAROTTA H, PINHO L, GUDASZ C,et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming[J]. Nature Climate Change, 2014, 4(6): 467-470. DOI: 10.1038/nclimate2222

    [73] [73] JUNGER P C, DA COSTA CATOMB DANTAS F, NOBRE R L G,et al. Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs[J]. Science of The Total Environment, 2019, 664: 283-295. DOI: 10.1016/j.scitotenv.2019.01.273

    [74] [74] DAVIDSON C W. Spatial and temporal variability of coastal carbonate chemistry in the southern California region[D].2015: University of California, San Diego.

    [75] [75] PODGRAJSEK E, SAHLE E, RUTGERSSON A. Diel cycle of lake-air CO2 flux from a shallow lake and the impact of waterside convection on the transfer velocity[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1): 29-38. DOI: 10.1002/2014jg002781

    [77] [77] CZIKOWSKY M J, MACINTYRE S, TEDFORD E W,et al. Effects of wind and buoyancy on carbon dioxide distribution and air-water flux of a stratified temperate lake[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2305-2322. DOI: 10.1029/2017jg004209

    [78] [78] GU B H, SCHELSKE C L, COVENEY M F. Low carbon dioxide partial pressure in a productive subtropical lake[J]. Aquatic Sciences, 2011, 73(3): 317-330. DOI: 10.1007/s00027-010-0179-y

    [79] [79] DUAN H T, XIAO Q T, QI T C. Measuring lake carbon dioxide from space: Opportunities and challenges[J]. The Innovation Geoscience, 2023, 1(2): 100025. DOI: 10.59717/j.xinn-geo.2023.100025

    [80] [80] QI T C, XIAO Q T, CAO Z G,et al. Satellite estimation of dissolved carbon dioxide concentrations in China's Lake Taihu[J]. Environmental Science & Technology, 2020, 54(21): 13709-13718. DOI: 10.1021/acs.est.0c04044

    [81] [81] ZHAO R X, YANG Q, WEN Z D,et al. Satellite estimation ofpCO2 and quantification of CO2 fluxes in China's Chagan Lake in the context of climate change[J]. Remote Sensing, 2023, 15(24): 5680. DOI: 10.3390/rs15245680

    [82] [82] KUTSER T, VERPOORTER C, PAAVEL B,et al. Estimating lake carbon fractions from remote sensing data[J]. Remote Sensing of Environment, 2015, 157: 138-146. DOI: 10.1016/j.rse.2014.05.020

    [84] [84] XUE L, CAI W J, HU X P,et al. Sea surface carbon dioxide at the Georgia time series site(2006-2007): Air-sea flux and controlling processes[J]. Progress in Oceanography, 2016, 140: 14-26. DOI: 10.1016/j.pocean.2015.09.008

    [85] [85] HOLGERSON M A, RAYMOND P A. Large contribution to inland water CO2 and CH4 emissions from very small ponds[J]. Nature Geoscience, 2016, 9(3): 222-226. DOI: 10.1038/ngeo2654

    [86] [86] LAUERWALD R, LARUELLE G G, HARTMANN J,et al. Spatial patterns in CO2 evasion from the global river network[J]. Global Biogeochemical Cycles, 2015, 29(5): 534-554. DOI: 10.1002/2014gb004941

    [87] [87] LIU H P, ZHANG Q Y, KATUL G G,et al. Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir[J]. Environmental Research Letters, 2016, 11(6): 064001. DOI: 10.1088/1748-9326/11/6/064001

    [88] [88] RAN L S, YUE R, SHI H Y,et al. Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir[J]. Journal of Hydrology, 2022, 608: 127652. DOI: 10.1016/j.jhydrol.2022.127652

    [89] [89] JONSSON A, BERG J, JANSSON M. Variations inpCO2 during summer in the surfacewater of an unproductive lake in Northern Sweden[J].Tellus B: Chemical and Physical Meteorology, 2022, 59(5): 797. DOI: 10.1111/j.1600-0889. 2007. 00307.x

    [90] [90] MORIN T H, REY-SNCHEZ A C, VOGEL C S,et al. Carbon dioxide emissions from an oligotrophic temperate lake: An eddy covariance approach[J]. Ecological Engineering, 2018, 114: 25-33. DOI: 10.1016/j.ecoleng.2017.05.005

    [91] [91] SHAO C L, CHEN J Q, STEPIEN C A,et al. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1587-1604. DOI: 10.1002/2015jg003025

    [92] [92] SONG L P, LEE Z P, SHANG S L,et al. On the spatial and temporal variations of primary production in the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4201514. DOI: 10.1109/TGRS. 2023. 3241209

    [93] [93] LIU W T, XIE X S. Space observation of carbon dioxide partial pressure at ocean surface[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5472-5484. DOI: 10.1109/JSTARS.2017.2766138

    Tools

    Get Citation

    Copy Citation Text

    LIU Shiwei, SONG Kaishan, XIONG Chunlan, LIU Ge, TAO Hui, SHANG Yingxin, WEN Zhidan. Advances in Remote Sensing Retrieval of Aquatic pCO2[J]. Remote Sensing Technology and Application, 2025, 40(4): 875

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 18, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: WEN Zhidan (wenzhidan@iga.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0875

    Topics