Acta Physica Sinica, Volume. 68, Issue 22, 220303-1(2019)
Fig. 1. (a) 2D hexagonal lattice, representing graphene, monolayer transition metal dichalcogenides (TMDs), etc; (b) In monolayer graphene, inversion symmetry is broken when monolayer graphene interacts with h-BN substrate. The monolayer TMDs have structures that lack inversion symmetry. Inversion symmetry in bilayer graphene and TMDs can be switched on/off by an electric field applied in the
Fig. 2. (a) Schematic representation of a shear domain wall in bilayer graphene and the band structure of BA, Saddle point (SP), and AB stacking. Red and magenta wavy arrows represent chiral topological modes bound to the domain wall; (b), (c) Band structure of the wall under a positive (negative) interlayer bias
for the
Fig. 3. (a) The Moiré superlattice as seen in twisted bilayer graphene[10]; (b) schematic representation of the mini Brillouin zone. , and denote points in the mini Brillouin zone[10]; (c) band structure for valley + of the twisted bilayer graphene aligned with h-BN in the mini Brillouin zone [8]. (a)转角双层石墨烯莫尔超晶格示意图[10]; (b)小布里渊区示意图, , 和 代表小布里渊区中的点[10]; (c)与h-BN对齐的转角双层石墨烯中小能带处的能带结构, [8]
Fig. 4. (a) Schematic of ABC TLG/h-BN Moiré superlattice. Only atoms of the top h-BN layer and the bottom graphene layer are shown for clarity[13]; (b) illustration of the ABC stacked trilayer graphene/h-BN system. A vertical electric field introduces an energy difference for electrons between the top and the bottom graphene layer[12]; (c), (d) energy dispersion of the two electron and hole minibands without and with a vertical electrical field, respectively. The vertical electrical field in (d) generates a potential difference of 20 meV between the top and bottom graphene layers, leading to an isolated hole minibands with strongly suppressed bandwidth. The reduced electronic bandwidth relative to the Coulomb interaction enhances the electron correlation, and leads to the tunable Mott insulator states[13]. (a) ABC TLG/h-BN的莫尔超晶格示意图, 为了图像清晰, 只显示了顶部h-BN和底部石墨烯最上层的原子[13]; (b) ABC堆叠三层石墨烯/h-BN体系示意图, 垂直电场使顶部和底部石墨烯层之间的电子能量差为 [12]; (c), (d)分别为没有和有垂直电场时的小布里渊区处的能带图; (d)垂直电场在顶部和底部石墨烯层之间产生20 mev的电位差, 导致了一个带宽减小的孤立的空穴型小能带, 增强了强关联作用, 从而生成了可调节的Mott绝缘体态[13]
Fig. 5. ABC TLG/h-BN, color plot of the longitudinal resistivity and Magnetic field dependent
: (a) Longitudinal resistivity as a function of
and
at
Fig. 6. (a) Schematic of the IR s-SNOM experimental technique. AB, BA, and AA label periodically occurring stacking types of graphene layers; (b) (Left) isualizing the nano-light photonic crystal formed by the domain wall in twisted bilayer graphene. The contrast is due to enhanced local optical conductivity at domain wall. (Right) Dark-field TEM image of a twisted bilayer graphene sample; (c), (d) IR s-SNOM images obtained for = 135 nm and 282 nm, respectively[65]. (a) 红外s-SNOM实验技术示意图. AB、BA和AA表示双层石墨烯堆积方式的周期性改变; (b) (左)显示转角双层石墨烯中由畴壁晶格形成的纳米光子晶体. 这种反差是由于畴壁的局部光学导电性增强造成的. (右)转角双层石墨烯样品的暗场TEM图像; (c), (d) 分别为 = 135 nm和282 nm时获得的红外s-SNOM图像[65]
Fig. 7. (a) 3D representation of the electronic band structure of graphene/h-BN obtained from the phenomenological model; (b) Optical transitions at 170 mev, for a magnitude of the smaller than ; (c) For a magnitude of larger than one finds multiple additional channels for optical transitions, all initiated by the moirépotential. These transitions enhance the conductivity and also yield an interband contribution to the plasmonic wavelength in addition to intraband contribution[80]. (a) 通过唯象模型得到的石墨烯/h-BN电子能带结构的三维表示; (b) 小于 ~170 meV时的光学跃迁; (c) 大于 时莫尔势导致多个额外的光学跃迁通道, 这些跃迁提高电导率, 同时对等离激元波长产生了一个额外的带间跃迁贡献[80]
Get Citation
Copy Citation Text
Xin-Yu Lü, Zhi-Qiang Li.
Received: Sep. 2, 2019
Accepted: --
Published Online: Sep. 17, 2020
The Author Email: