Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237003(2025)

Cross-Scale Pooling Embedding Image Fusion Algorithm with Long- and Short-Distance Attention Collaboration

Xicheng Sun1、*, Fu Lü1,2, and Yongan Feng3
Author Affiliations
  • 1School of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • 2Basic Teaching Department, Liaoning Technical University, Huludao 125105, Liaoning , China
  • 3Informatization and Network Management Center, School of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • show less
    Figures & Tables(12)
    Network architecture of proposed algorithm
    Structure of MDCM module
    Structure of CA module
    Structure of LSACM module
    Comparative experimental results on the TNO dataset by different algorithms
    Comparative experimental results on the Roadscene dataset by different algorithms
    Qualitative comparison of ablation experiments on the TNO dataset
    • Table 1. CPEL parameters

      View table

      Table 1. CPEL parameters

      StageInput dimensionKernelStrideOutput dimension
      M1648416
      M21284416
      M32564232
      M45122164
    • Table 2. Comparative experimental results on the TNO and Roadscene datasets by different algorithms

      View table

      Table 2. Comparative experimental results on the TNO and Roadscene datasets by different algorithms

      AlgorithmTNO datasetRoadscene dataset
      ENSDVIFSFAGSCDENSDVIFSFAGSCD
      DenseFuse6.45728.34790.67220.03262.57641.57947.02799.86520.76280.03683.09811.6528
      DIDFuse6.983210.09150.81720.04685.23891.80247.238010.34800.85040.04284.09211.6923
      RFN7.04299.93200.77430.02392.76431.58207.34209.54900.80440.02792.45901.7732
      SwinFusion6.87539.56280.77630.05624.29811.52906.934210.23900.81350.04233.09181.6583
      U2Fusion6.43809.34890.62700.03472.58811.37807.023410.12460.73920.04234.23701.4593
      LRRNet6.85839.30910.71230.04783.56921.58906.90239.37800.83180.04283.98201.5638
      CoCoNet7.755210.1530.65320.06325.68931.73787.632210.35670.85430.07175.34801.8023
      Proposed7.83289.97380.80730.06116.01701.80277.728110.40270.85300.06275.52731.8172
    • Table 3. Quantitative comparison of ablation experiments on the TNO and Roadscene datasets

      View table

      Table 3. Quantitative comparison of ablation experiments on the TNO and Roadscene datasets

      AlgorithmTNO datasetRoadscene dataset
      ENSDVIFSCDENSDVIFSCD
      w/o LSACM6.47217.34820.65731.64836.67289.24160.73511.7263
      w/o CA7.23687.45220.67581.67837.472810.02730.81261.7826
      w/o CPEL6.36217.67210.71341.68346.83569.37260.76351.7362
      w/o MDCM7.12428.34720.72841.73657.362710.16370.80151.8126
      Propsoed7.82839.96370.79361.80287.832810.41360.85411.8162
    • Table 4. Comparative experimental results on the running efficiency of eight algorithms

      View table

      Table 4. Comparative experimental results on the running efficiency of eight algorithms

      AlgorithmParams /106FLOPs /109Time /s
      DenseFuse0.925497.060.124
      DIDFuse0.26118.710.055
      RFN10.936676.090.239
      U2Fusion0.659366.340.123
      SwinFusion0.974471.041.345
      LRRNet0.492134.790.079
      CoCoNet9.130115.370.052
      Proposed4.5382146.830.069
    • Table 5. Comparison of object detection performance on the M3FD dataset

      View table

      Table 5. Comparison of object detection performance on the M3FD dataset

      ImageAPmAP@0.5
      BusCarLampMotorPeopleTruck
      Infrared78.2387.3970.1261.2478.3365.2774.43
      Visible78.2990.3987.3968.3570.1470.2877.47
      DenseFuse94.3288.1790.2768.8365.8371.9379.89
      DIDFuse79.6392.4984.3768.3979.3668.6378.81
      RFN78.1791.8384.3872.9178.3968.7379.07
      SwinFusion94.3987.3489.7467.8365.3274.0279.77
      U2Fusion95.1588.8488.9468.5265.3872.6379.91
      LRRNet77.8186.3983.6867.7362.3869.6374.60
      CoCoNet94.2388.5090.6371.6365.0173.8180.64
      Proposed94.5288.6890.5371.8371.5874.6381.96
    Tools

    Get Citation

    Copy Citation Text

    Xicheng Sun, Fu Lü, Yongan Feng. Cross-Scale Pooling Embedding Image Fusion Algorithm with Long- and Short-Distance Attention Collaboration[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Oct. 22, 2024

    Accepted: Dec. 12, 2024

    Published Online: Jun. 9, 2025

    The Author Email: Xicheng Sun (3079194134@qq.com)

    DOI:10.3788/LOP242159

    Topics