Acta Optica Sinica, Volume. 43, Issue 10, 1027001(2023)
Green Light-Induced Infrared Absorption Effect in Preparation Experiment of High-PowerBright Squeezed State Light Field of 1064 nm
[1] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 77, 513-577(2005).
[2] Furusawa A, Sorensen J L, Braunstein S L et al. Unconditional quantum teleportation[J]. Science, 282, 706-709(1998).
[3] Shi S P, Yang W H, Zheng Y H et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 46, 0701009(2019).
[4] Yang P, Ke X Z, Zhang F L et al. Sub-shot-noise sub-hertz laser-interferometric measurement[J]. Laser & Optoelectronics Progress, 59, 0127001(2022).
[5] Yu X D, Li W, Zhu S Y et al. Mach-Zehnder interferometer with squeezed and EPR entangled optical fields[J]. Chinese Physics B, 25, 020304(2016).
[6] Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit[J]. Nature Photonics, 7, 229-233(2013).
[7] Taylor M A, Janousek J, Daria V et al. Subdiffraction-limited quantum imaging within a living cell[J]. Physical Review X, 4, 011017(2014).
[8] Tse M, Yu H C, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).
[9] Liu Y Z, Zuo X J, Yan Z H et al. Analysis of quantum interferometer based on optical parametric amplifier[J]. Acta Optica Sinica, 42, 0327013(2022).
[10] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 27, A63-A72(2010).
[11] Li B B, Bílek J, Hoff U B et al. Quantum-enhanced optomechanical magnetometry[J]. Optica, 5, 850-856(2018).
[12] Gottesman D, Kitaev A, Preskill J. Encoding a qubit in an oscillator[J]. Physical Review A, 64, 012310(2001).
[13] Liu T, Zhu C, Sun C Y et al. Influences of different weather conditions on performance of free-space quantum communication system[J]. Acta Optica Sinica, 40, 0227001(2020).
[14] Kaiser F, Fedrici B, Zavatta A et al. A fully guided-wave squeezing experiment for fiber quantum networks[J]. Optica, 3, 362-365(2016).
[15] Wu Y M, Wang Q W, Tian L et al. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes[J]. Photonics Research, 10, 1909-1914(2022).
[16] Shi S P, Tian L, Wang Y J et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes[J]. Physical Review Letters, 125, 070502(2020).
[17] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).
[18] Yang W H, Shi S P, Wang Y J et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 42, 4553-4556(2017).
[19] Sun X C, Wang Y J, Tian L et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Optics Letters, 17, 072701(2019).
[20] Tian Y H, Wang J P, Yang W H et al. Frequency doubling system for integrated quantum squeezed light source based on MgO: LiNbO3 crystal[J]. Chinese Journal of Lasers, 47, 1108001(2020).
[21] Zhang X L, Wang Q W, Yao W X et al. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme[J]. Acta Physica Sinica, 71, 184203(2022).
[22] Wang J P, Zhang W H, Li R X et al. Design of optical parametric cavity for broadband squeezed light field[J]. Acta Physica Sinica, 69, 234204(2020).
[23] Zheng Y H, Zhang W H, Peng K C. Optical resonator[P].
[24] Li Z X, Tian Y H, Wang Y J et al. Residual amplitude modulation and its mitigation in wedged electro-optic modulator[J]. Optics Express, 27, 7064-7071(2019).
[25] Li Z X, Ma W G, Yang W H et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation[J]. Optics Letters, 41, 3331-3334(2016).
[26] Wang J R, Wang Q W, Tian L et al. A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range[J]. Chinese Physics B, 29, 034205(2020).
[27] Shi S P, Wang Y J, Yang W H et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 43, 5411-5414(2018).
[28] Mabuchi H, Polzik E S, Kimble H J. Blue-light-induced infrared absorption in KNbO3[J]. Journal of the Optical Society of America B, 11, 2023-2029(1994).
[29] Wang S, Pasiskevicius V, Laurell F. Dynamics of green-light induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4[J]. Journal of Applied Physics, 96, 2023-2028(2004).
Get Citation
Copy Citation Text
Rui Guo, Wenhai Yang, Yong Guo, Hui Yao. Green Light-Induced Infrared Absorption Effect in Preparation Experiment of High-PowerBright Squeezed State Light Field of 1064 nm[J]. Acta Optica Sinica, 2023, 43(10): 1027001
Category: Quantum Optics
Received: Nov. 22, 2022
Accepted: Jan. 3, 2023
Published Online: May. 9, 2023
The Author Email: Yang Wenhai (yangwh1@cast504.com)