APPLIED LASER, Volume. 44, Issue 11, 191(2024)

Research Progress of Meta-Optical Sensors

Zhu Zhongxia, Wu Xuechen*, and Wu Yang
Author Affiliations
  • Shanghai Institute of Laser Technology Co., Ltd., Shanghai Engineering Research Center of Laser Medical Equipment, Shanghai 200233, China
  • show less
    References(37)

    [1] [1] BORN M W. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. 7th expanded ed. Cambridge: Cambridge University Press, 1999.

    [2] [2] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [3] [3] AIETA F, GENEVET P, YU N F, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706.

    [4] [4] REDDY B R, KAMMA I, KOMMIDI P. Optical sensing techniques for temperature measurement[J]. Applied Optics, 2013, 52(4): B33-B39.

    [5] [5] OWJI E, MOKHTARI H, OSTOVARI F, et al. 2D materials coated on etched optical fibers as humidity sensor[J]. Scientific Reports, 2021, 11(1): 1771.

    [6] [6] BERKOVIC G, SHAFIR E. Optical methods for distance and displacement measurements[J]. Advances in Optics and Photonics, 2012, 4(4): 441.

    [7] [7] PELTOMAA R, GLAHN-MARTNEZ B, BENITO-PEA E, et al. Optical biosensors for label-free detection of small molecules[J]. Sensors, 2018, 18(12): 4126.

    [8] [8] AZAD S, MISHRA S K, REZAEI G, et al. Rapid and sensitive magnetic field sensor based on photonic crystal fiber with magnetic fluid infiltrated nanoholes[J]. Scientific Reports, 2022, 12: 9672.

    [9] [9] KAVITA, JYOTI, MISHRA S K, et al. Detection of alcohol content in food products by lossy mode resonance technique[J]. Journal of the Electrochemical Society, 2022, 169(7): 077504.

    [10] [10] LIANG F, CLARKE N, PATEL P, et al. Scalable photonic crystal chips for high sensitivity protein detection[J]. Optics Express, 2013, 21(26): 32306-32312.

    [11] [11] SUN S L, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.

    [12] [12] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069.

    [13] [13] ARBABI A, BRIGGS R M, HORIE Y, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers[J]. Optics Express, 2015, 23(26): 33310-33317.

    [14] [14] KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234.

    [15] [15] BUTT M A, KAZANSKIY N L, KHONINA S N. Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor[J]. Journal of Modern Optics, 2019, 66(19): 1920-1925.

    [16] [16] OLLANIK A J, OGUNTOYE I O, HARTFIELD G Z, et al. Highly sensitive, affordable, and adaptable refractive index sensing with silicon-based dielectric metasurfaces[J]. Advanced Materials Technologies, 2019, 4(2): 1800567.

    [17] [17] FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.

    [18] [18] BRAIMAN M S, ROTHSCHILD K J. Fourier transform infrared techniques for probing membrane protein structure[J]. Annual Review of Biophysics and Biophysical Chemistry, 1988, 17: 541-570.

    [19] [19] FAN M K, ANDRADE G F S, BROLO A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry[J]. Analytica Chimica Acta, 2011, 693(1/2): 7-25.

    [20] [20] RODRIGO D, TITTL A, AIT-BOUZIAD N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 2018, 9(1): 2160.

    [21] [21] MOHAMMADI E, TSAKMAKIDIS K L, ASKARPOUR A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

    [22] [22] TANG Y Q, COHEN A E. Optical chirality and its interaction with matter[J]. Physical Review Letters, 2010, 104(16): 163901.

    [23] [23] GARCA-GUIRADO J, SVEDENDAHL M, PUIGDOLLERS J, et al. Enhanced chiral sensing with dielectric nanoresonators[J]. Nano Letters, 2020, 20(1): 585-591.

    [24] [24] KENWORTHY C F, PJOTR STOEVELAAR L, ALEXANDER A J, et al. Using the near field optical trapping effect of a dielectric metasurface to improve SERS enhancement for virus detection[J]. Scientific Reports, 2021, 11: 6873.

    [25] [25] ZHENG M C, SHEN Y, ZOU Q S, et al. Moisture-driven switching of plasmonic bound states in the continuum in the visible region[J]. Advanced Functional Materials, 2023, 33(3): 2209368.

    [26] [26] CHEN C E, SONG G T, REN J S, et al. A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation[J]. Chemical Communications, 2008(46): 6149-6151.

    [27] [27] JIANG Y, SHI M L, LIU Y, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins[J]. Angewandte Chemie (International Ed in English), 2017, 56(39): 11916-11920.

    [28] [28] CAO T F, ZHAO Y L, NATTOO C A, et al. A smartphone biosensor based on analysing structural colour of porous silicon[J]. The Analyst, 2019, 144(13): 3942-3948.

    [29] [29] TALUKDAR T H, MCCOY B, TIMMINS S K, et al. Hyperchromatic structural color for perceptually enhanced sensing by the naked eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30107-30117.

    [30] [30] GARCIA-GUIRADO J, RICA R A, ORTEGA J, et al. Overcoming diffusion-limited biosensing by electrothermoplasmonics[J]. ACS Photonics, 2018, 5(9): 3673-3679.

    [31] [31] MELLI M, SCOLES G, LAZZARINO M. Fast detection of biomolecules in diffusion-limited regime using micromechanical Pillars[J]. ACS Nano, 2011, 5(10): 7928-7935.

    [32] [32] SHEEHAN P E, WHITMAN L J. Detection limits for nanoscale biosensors[J]. Nano Letters, 2005, 5(4): 803-807.

    [33] [33] NAIR P R, ALAM M A. Performance limits of nanobiosensors[J]. Applied Physics Letters, 2006, 88(23): 233120.

    [34] [34] YANG W H, XIAO S M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11(1): 1864.

    [35] [35] WANG S M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.

    [36] [36] LI Q T, VAN DE GROEP J, WHITE A K, et al. Metasurface optofluidics for dynamic control of light fields[J]. Nature Nanotechnology, 2022, 17(10): 1097-1103.

    [37] [37] HONG C C, HONG I, YANG S, et al. Towards rapid colorimetric detection of extracellular vesicles using optofluidics-enhanced color-changing optical metasurface[J]. Optics Express, 2024, 32(4): 4769-4777.

    Tools

    Get Citation

    Copy Citation Text

    Zhu Zhongxia, Wu Xuechen, Wu Yang. Research Progress of Meta-Optical Sensors[J]. APPLIED LASER, 2024, 44(11): 191

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 13, 2024

    Accepted: Mar. 11, 2025

    Published Online: Mar. 11, 2025

    The Author Email: Xuechen Wu (wuxuechenbb@163.com)

    DOI:10.14128/j.cnki.al.20244411.191

    Topics