Chinese Journal of Lasers, Volume. 50, Issue 3, 0307102(2023)

Photodamage of Biotissue in Multiphoton Imaging

Xiao-Xuan Liang1、*, Alfred Vogel1, and Zhenxi Zhang2
Author Affiliations
  • 1Institute of Biomedical Optics, University of Luebeck, Luebeck23562, Germany
  • 2Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • show less
    References(77)

    [1] Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [2] Denk W, Piston D W, Webb W W. Two-photon molecular excitation in laser-scanning microscopy[M]. Pawley J B. Handbook of biological confocal microscopy, 445-458(1995).

    [3] Li S Q, Geng J X, Li Y P et al. New advances in biomedical applications of multiphoton imaging technology[J]. Acta Physica Sinica, 69, 228702(2020).

    [4] Wang S W, Lei M. Near infrared‑Ⅱ excited multiphoton fluorescence imaging[J]. Laser & Optoelectronics Progress, 59, 0617002(2022).

    [5] Wang T Y, Xu C. Three-photon neuronal imaging in deep mouse brain[J]. Optica, 7, 947-960(2020).

    [6] Masters B R, So P T C[M]. Handbook of biomedical nonlinear optical microscopy(2008).

    [7] So P T C, Dong C Y, Masters B R et al. Two-photon excitation fluorescence microscopy[J]. Annual Review of Biomedical Engineering, 2, 399-429(2000).

    [8] Xu C, Zipfel W, Shear J B et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 93, 10763-10768(1996).

    [9] Qu X C, Wang J, Zhang Z X et al. Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes[J]. Journal of Biomedical Optics, 13, 031217(2008).

    [10] Li H, Xia X Y, Chen T A et al. Applications of two-photon excitation fluorescence lifetime imaging in tumor diagnosis[J]. Chinese Journal of Lasers, 45, 0207010(2018).

    [11] Wang T Y, Wu C Y, Ouzounov D G et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain[J]. eLife, 9, e53205(2020).

    [12] Orzekowsky-Schroeder R B, Martensen B, Vogel A et al. In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence[J]. Journal of Biomedical Optics, 16, 116025(2011).

    [13] Orzekowsky-Schroeder R, Klinger A, Freidank S et al. Probing the immune and healing response of murine intestinal mucosa by time-lapse 2-photon microscopy of laser-induced lesions with real-time dosimetry[J]. Biomedical Optics Express, 5, 3521-3540(2014).

    [14] Cheng Z Y, Han Y Y, Wei B W et al. Probing neuronal functions with precise and targeted laser ablation in the living cortex[J]. Optica, 8, 1559-1572(2021).

    [15] Konig K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 200, 83-104(2000).

    [16] Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen[J]. Annalen Der Physik, 401, 273-294(1931).

    [17] Lakowicz J R. Multiphoton excitation and microscopy[M]. Principles of fluorescence spectroscopy, 607-621(2006).

    [18] Kaiser W, Garrett C G B. Two-photon excitation in CaF2∶Eu2+[J]. Physical Review Letters, 7, 229-231(1961).

    [19] Débarre D, Olivier N, Supatto W et al. Mitigating phototoxicity during multiphoton microscopy of live drosophila embryos in the 1.0-1.2 µm wavelength range[J]. PLoS One, 9, e104250(2014).

    [20] König K, Liang H, Berns M W et al. Cell damage by near-IR microbeams[J]. Nature, 377, 20-21(1995).

    [21] König K, So P T, Mantulin W W et al. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress[J]. Journal of Microscopy, 183, 197-204(1996).

    [22] König K. Cell damage during multi-photon microscopy[M]. Pawley J B. Handbook of biological confocal microscopy, 680-689(2006).

    [23] Icha J, Weber M, Waters J C et al. Phototoxicity in live fluorescence microscopy, and how to avoid it[J]. BioEssays, 39, 1700003(2017).

    [24] Galli R, Uckermann O, Andresen E F et al. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues[J]. PLoS One, 9, e110295(2014).

    [25] Voronin A A, Zheltikov A M. Ionization penalty in nonlinear optical bioimaging[J]. Physical Review E, 81, 051918(2010).

    [26] Voronin A A, Fedotov I V, Doronina-Amitonova L V et al. Ionization penalty in nonlinear Raman neuroimaging[J]. Optics Letters, 36, 508-510(2011).

    [27] Durand A, Wiesner T, Gardner M A et al. A machine learning approach for online automated optimization of super-resolution optical microscopy[J]. Nature Communications, 9, 5247(2018).

    [28] Williams F, Varma S P, Hillenius S. Liquid water as a lone-pair amorphous semiconductor[J]. The Journal of Chemical Physics, 64, 1549-1554(1976).

    [29] Vogel A, Noack J, Hüttman G et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Applied Physics B, 81, 1015-1047(2005).

    [30] Alizadeh E, Orlando T M, Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA[J]. Annual Review of Physical Chemistry, 66, 379-398(2015).

    [31] Abdoul-Carime H, Sanche L. Alteration of protein constituents induced by low-energy (<35 eV) electrons: II. Dissociative electron attachment to amino acids containing cyclic groups[J]. Radiation Research, 160, 86-94(2003).

    [32] Cortat B, Garcia C C M, Quinet A et al. The relative roles of DNA damage induced by UVA irradiation in human cells[J]. Photochemical & Photobiological Sciences, 12, 1483-1495(2013).

    [33] Kolenc O I, Quinn K P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD[J]. Antioxidants & Redox Signaling, 30, 875-889(2019).

    [34] Li B H, Chen T L, Lin L et al. Recent progress in photodynamic therapy: from fundamental research to clinical applications[J]. Chinese Journal of Lasers, 49, 0507101(2022).

    [36] Schmalz M F, Wieser I, Schindler F et al. Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin[J]. Optics Letters, 43, 2877-2880(2018).

    [37] Liang X-X, Vogel A. Probing neuronal functions with precise and targeted laser ablation in the living cortex: comment[J]. Optica, 9, 868-871(2022).

    [38] Vogel A, Liang X X, Freidank S et al. Free-electron and thermally mediated pathways of photodamage in nonlinear microscopy[J]. Proceedings of SPIE, 11648, 1164806(2021).

    [39] Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. Part 1. Theory[J]. IEEE Journal of Quantum Electronics, 31, 2241-2249(1995).

    [40] Linz N, Freidank S, Liang X X et al. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state[J]. Physical Review B, 91, 134114(2015).

    [41] Thaller A, Laenen R, Laubereau A. Femtosecond spectroscopy of the hydrated electron: novel features in the infrared[J]. Chemical Physics Letters, 398, 459-465(2004).

    [42] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).

    [43] Dong Y F, Gao Y X, Liu W H et al. Clustered DNA damage induced by 2-20 eV electrons and transient anions: general mechanism and correlation to cell death[J]. The Journal of Physical Chemistry Letters, 10, 2985-2990(2019).

    [44] Nguyen J, Ma Y H, Luo T et al. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 11778-11783(2011).

    [45] Cobut V, Jay-Gerin J P, Frongillo Y et al. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water[J]. Radiation Physics and Chemistry, 47, 247-250(1996).

    [46] Fedor J, Cicman P, Coupier B et al. Fragmentation of transient water anions following low-energy electron capture by H2O/D2O[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 39, 3935-3944(2006).

    [47] Elles C G, Shkrob I A, Crowell R A et al. Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation[J]. The Journal of Chemical Physics, 126, 164503(2007).

    [48] Belmouaddine H, Madugundu G S, Wagner J R et al. DNA base modifications mediated by femtosecond laser-induced cold low-density plasma in aqueous solutions[J]. The Journal of Physical Chemistry Letters, 10, 2753-2760(2019).

    [49] Meesat R, Belmouaddine H, Allard J F et al. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E2508-E2513(2012).

    [50] Liang X X. Study on optical breakdown thresholds, conduction band electron energy spectra and cavitation bubbles in water induced by femto-nanosecond laser pulses[D](2019).

    [51] Linz N, Freidank S, Liang X X et al. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery[J]. Physical Review B, 94, 024113(2016).

    [52] Liang X X, Linz N, Freidank S et al. Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation[J]. Journal of Fluid Mechanics, 940, A5(2022).

    [53] Liang X X, Wang J, Zhang Z X. Nano-scale photoporation by tightly focused lasers: a survey[J]. Journal of Xi’an Jiaotong University, 46, 107-115(2012).

    [54] Gu Q, Wang J Z, Du X F et al. Cell optoporation characterization method for gold-nanoparticle mediation[J]. Chinese Journal of Lasers, 47, 0207021(2020).

    [55] Brinkmann R, Hüttmann G, Rögener J et al. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen[J]. Lasers in Surgery and Medicine, 27, 451-464(2000).

    [56] Simanovskii D M, Mackanos M A, Irani A R et al. Cellular tolerance to pulsed hyperthermia[J]. Physical Review E, 74, 011915(2006).

    [57] Palczewska G, Boguslawski J, Stremplewski P et al. Noninvasive two-photon optical biopsy of retinal fluorophores[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 22532-22543(2020).

    [58] Masters B R, So P T C, Buehler C et al. Mitigating thermal mechanical damage potential during two-photon dermal imaging[J]. Journal of Biomedical Optics, 9, 1265-1270(2004).

    [59] Zhigilei L V, Garrison B J. Microscopic simulation of short-pulse laser damage of melanin particles[J]. Proceedings of SPIE, 3254, 135-143(1998).

    [60] Liang X X, Zhang Z X, Vogel A. Multi-rate-equation modeling of the energy spectrum of laser-induced conduction band electrons in water[J]. Optics Express, 27, 4672-4693(2019).

    [61] Simons J. How do low-energy (0.1-2 eV) electrons cause DNA-strand breaks?[J]. Accounts of Chemical Research, 39, 772-779(2006).

    [62] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).

    [63] Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 103, 577-644(2003).

    [64] Carslaw H S, Jaeger J C[M]. Conduction of heat in solids(1959).

    [65] Baumgart D C, Carding S R. Inflammatory bowel disease: cause and immunobiology[J]. The Lancet, 369, 1627-1640(2007).

    [66] Cheng Z Y, Lin J N, Han Y Y et al. Probing neuronal functions with precise and targeted laser ablation in the living cortex: reply[J]. Optica, 9, 872-873(2022).

    [67] Podgorski K, Ranganathan G. Brain heating induced by near-infrared lasers during multiphoton microscopy[J]. Journal of Neurophysiology, 116, 1012-1023(2016).

    [68] Meesungnoen J, Jay-Gerin J P, Filali-Mouhim A et al. Low-energy electron penetration range in liquid water[J]. Radiation Research, 158, 657-660(2002).

    [69] Kai T, Yokoya A, Ukai M et al. Dynamics of low-energy electrons in liquid water with consideration of Coulomb interaction with positively charged water molecules induced by electron collision[J]. Radiation Physics and Chemistry, 102, 16-22(2014).

    [70] Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation[J]. Chemical Physics, 77, 131-143(1983).

    [71] Boguslawski J, Palczewska G, Tomczewski S et al. In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope[J]. The Journal of Clinical Investigation, 132, e154218(2022).

    [72] Palczewska G, Stremplewski P, Suh S et al. Two-photon imaging of the mammalian retina with ultrafast pulsing laser[J]. JCI Insight, 3, e121555(2018).

    [73] Boettner E, Wolter J. Transmission of the ocular media[J]. Investigative Ophthalmology & Visual Science, 1, 776-783(1962).

    [74] Jacques S L, McAuliffe D J. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation[J]. Photochemistry and Photobiology, 53, 769-775(1991).

    [75] Lecoq J, Orlova N, Grewe B F. Wide. Fast. Deep: recent advances in multiphoton microscopy of in vivo neuronal activity[J]. The Journal of Neuroscience, 39, 9042-9052(2019).

    [76] Picot A, Dominguez S, Liu C et al. Temperature rise under two-photon optogenetic brain stimulation[J]. Cell Reports, 24, 1243-1253(2018).

    [77] Wang M R, Wu C Y, Sinefeld D et al. Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain[J]. Biomedical Optics Express, 9, 3534-3543(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xiao-Xuan Liang, Alfred Vogel, Zhenxi Zhang. Photodamage of Biotissue in Multiphoton Imaging[J]. Chinese Journal of Lasers, 2023, 50(3): 0307102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Sep. 13, 2022

    Accepted: Oct. 18, 2022

    Published Online: Feb. 6, 2023

    The Author Email: Liang Xiao-Xuan (x.liang@uni-luebeck.de)

    DOI:10.3788/CJL221231

    Topics