Acta Optica Sinica, Volume. 39, Issue 8, 0810004(2019)

U-Shaped Retinal Vessel Segmentation Algorithm Based on Adaptive Scale Information

Liming Liang1、*, Xiaoqi Sheng1, Zhimin Lan1, Guoliang Yang1, and Xinjian Chen2
Author Affiliations
  • 1 School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • 2 School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • show less
    References(39)

    [1] Fraz M M, Remagnino P, Hoppe A et al. Blood vessel segmentation methodologies in retinal images: a survey[J]. Computer Methods and Programs in Biomedicine, 108, 407-433(2012).

    [2] Zhu C Z, Zou B J, Zhao R C et al. Retinal vessel segmentation in colour fundus images using Extreme Learning Machine[J]. Computerized Medical Imaging and Graphics, 55, 68-77(2017).

    [3] Liang L M, Liu B W, Yang H L et al. Supervised blood vessel extraction in retinal images based on multiple feature fusion[J]. Chinese Journal of Computers, 41, 2566-2580(2018).

    [4] Memari N, Ramli A R. Bin Saripan M I, et al. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier[J]. PLoS ONE, 12, e0188939(2017).

    [5] Rousson M, Paragios N. Prior knowledge, level set representations & visual grouping[J]. International Journal of Computer Vision, 76, 231-243(2008).

    [6] Liang L M, Huang C L, Shi F et al. Retinal vessel segmentation using level set combined with shape priori[J]. Chinese Journal of Computers, 41, 1678-1692(2018).

    [7] Wu C Y, Yi B S, Zhang Y G et al. Retinal vessel image segmentation based on improved convolutional neural network[J]. Acta Optica Sinica, 38, 1111004(2018).

    [8] Fu H Z, Xu Y W. Wong D W K, et al. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. [C]//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), April 13-16, 2016, Prague, Czech Republic. New York: IEEE, 698-701(2016).

    [9] Gao X R, Cai Y H, Qiu C Y et al. Retinal blood vessel segmentation based on the Gaussian matched filter and U-net. [C]//2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), October 14-16, 2017, Shanghai. New York: IEEE, 17582703(2017).

    [10] Liang L M, Sheng X Q, Guo K et al[2019-02-16]. Improved U-Net retinal vessels segmentation Application Research of Computers, 2019, 37(4)[2019-02-16]. https://doi.org/10.19734/j.issn.1001-3695., 09, 0775(2018).

    [11] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science. Cham: Springer, 9351, 234-241(2015).

    [12] Morales S, Naranjo V, Angulo J et al. Automatic detection of optic disc based on PCA and mathematical morphology[J]. IEEE Transactions on Medical Imaging, 32, 786-796(2013).

    [13] Wang H Y, Tong Q, Lian Z P et al. K-L transform optimization algorithm for measurement matrix[J]. Computer Engineering and Applications, 54, 186-190, 215(2018).

    [14] Liu Y L, Gui Z G. Contrast enhancement using extracted details based on multi-scale top-hat transformation[J]. Computer Engineering and Design, 35, 1332-1335, 1340(2014).

    [15] Jin Q G, Meng Z P, Pham T D et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 178, 149-162(2019).

    [16] Dai J F, Qi H Z, Xiong Y W et al. Deformable convolutional networks. [C]//2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice. New York: IEEE, 764-773(2017).

    [17] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks. [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE, 2261-2269(2017).

    [18] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. [C]//32nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. Massachusetts: JMLR. org, 37, 448-456(2015).

    [19] Li Y, Fan C X, Li Y et al. Improving deep neural network with multiple parametric exponential linear units[J]. Neurocomputing, 301, 11-24(2018).

    [20] Vo D M, Lee S W. Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions[J]. Multimedia Tools and Applications, 77, 18689-18707(2018).

    [21] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation. [C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV), March 12-15, 2018, Lake Tahoe, NV. New York: IEEE, 1451-1460(2018).

    [22] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8689, 818-833(2014).

    [23] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. [C]//2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1520-1528(2015).

    [25] Staal J, Abramoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [26] Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 19, 203-210(2000).

    [27] Feng Z W, Yang J, Yao L X. Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. [C]//2017 IEEE International Conference on Image Processing (ICIP), September 17-20, 2017, Beijing. New York: IEEE, 1742-1746(2017).

    [28] Orlando J I, Prokofyeva E, Blaschko M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Biomedical Engineering, 64, 16-27(2017).

    [30] Peng S H, Zheng C X, Xu F et al. Blood vessels segmentation by using CDNet. [C]//2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), June 27-29, 2018, Chongqing. New York: IEEE, 305-310(2018).

    [31] Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network[J]. Acta Optica Sinica, 39, 0211002(2019).

    [32] Wang S L, Yin Y L, Cao G B et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 149, 708-717(2015).

    [33] Dasgupta A, Singh S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. [C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), April 18-21, 2017, Melbourne, Australia. New York: IEEE, 248-251(2017).

    [34] Cai Y H, Gao X R, Qiu C Y et al. Retinal vessel segmentation method with efficient hybrid features fusion[J]. Journal of Electronics & Information Technology, 39, 1956-1963(2017).

    [35] Strisciuglio N, Azzopardi G, Vento M et al. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters[J]. Machine Vision and Applications, 27, 1137-1149(2016).

    [36] Yan Z Q, Yang X, Cheng K T. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 65, 1912-1923(2018).

    [37] Zhang J, Dashtbozorg B, Bekkers E et al. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores[J]. IEEE Transactions on Medical Imaging, 35, 2631-2644(2016).

    [38] Ganin Y, Lempitsky V. N4-fields: neural network nearest neighbor fields for image transforms [M]. //Cremers D, Reid I, Saito H, et al. Computer vision-ACCV 2014. Lecture notes in computer science. Cham: Springer, 9004, 536-551(2015).

    [39] Xie S N, Tu Z W. Holistically-nested edge detection. [C]//2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1395-1403(2015).

    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Xiaoqi Sheng, Zhimin Lan, Guoliang Yang, Xinjian Chen. U-Shaped Retinal Vessel Segmentation Algorithm Based on Adaptive Scale Information[J]. Acta Optica Sinica, 2019, 39(8): 0810004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 4, 2019

    Accepted: May. 5, 2019

    Published Online: Aug. 7, 2019

    The Author Email: Liming Liang (lianglm67@163.com)

    DOI:10.3788/AOS201939.0810004

    Topics