Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)

Optical metalenses: fundamentals, dispersion manipulation, and applications

Yongli He1, Boxiang Song1、*, and Jiang Tang1,2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(123)

    [1] [1] Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. In: Materials for Sustainable Energy. pp. 1–11 (2010)

    [2] [2] Khanikaev, A.B., Wu, C., Shvets, G.: Fano-resonant metamaterials and their applications. Nanophotonics 2(4), 247–264 (2013)

    [3] [3] Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat. Nanotechnol. 11(1), 23–36 (2016)

    [4] [4] Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)

    [5] [5] Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S.: Optically resonant dielectric nanostructures. Science 354(6314), aag2472 (2016)

    [6] [6] Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M., Devlin, R.: Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4(1), 139–152 (2017)

    [7] [7] Rho, J.: Metasurfaces: Subwavelength nanostructure arrays for ultrathin flat optics and photonics. MRS Bull. 45(3), 180–187 (2020)

    [8] [8] Lalanne, P., Chavel, P.: Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017)

    [9] [9] Li, B., Piyawattanametha, W., Qiu, Z.: Metalens-based miniaturized optical systems. Micromachines 10(5), 310 (2019)

    [10] [10] Tseng, M.L., Hsiao, H.H., Chu, C.H., Chen, M.K., Sun, G., Liu, A.Q., Tsai, D.P.: Metalenses: advances and applications. Adv. Optical Mater. 6(18), 1800554 (2018)

    [11] [11] Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010)

    [12] [12] Aieta, F., Genevet, P., Kats, M.A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F.: Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12(9), 4932–4936 (2012)

    [13] [13] Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)

    [14] [14] Ni, X., Emani, N.K., Kildishev, A.V., Boltasseva, A., Shalaev, V.M.: Broadband light bending with plasmonic nanoantennas. Science 335(6067), 427 (2012)

    [15] [15] Sun, S., He, Q., Xiao, S., Xu, Q., Li, X., Zhou, L.: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431 (2012)

    [16] [16] Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Optics Photonics 1(3), 438–483 (2009)

    [17] [17] Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011)

    [18] [18] Svirko, Y., Zheludev, N., Osipov, M.: Layered chiral metallic microstructures with inductive coupling. Appl. Phys. Lett. 78(4), 498–500 (2001)

    [19] [19] Zou, L., Withayachumnankul, W., Shah, C.M., Mitchell, A., Bhaskaran, M., Sriram, S., Fumeaux, C.: Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21(1), 1344–1352 (2013)

    [20] [20] Walther, B., Helgert, C., Rockstuhl, C., Setzpfandt, F., Eilenberger, F., Kley, E.B., Lederer, F., Tünnermann, A., Pertsch, T.: Spatial and spectral light shaping with metamaterials. Adv. Mater. 24(47), 6300–6304 (2012)

    [21] [21] Lin, J., Mueller, J.P., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.C., Capasso, F.: Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130), 331–334 (2013)

    [22] [22] Cheng, H., Liu, Z., Chen, S., Tian, J.: Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater. 27(36), 5410–5421 (2015)

    [23] [23] Chen, H.T., Taylor, A.J., Yu, N.: A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79(7), 076401 (2016)

    [24] [24] Sun, S., Yang, K.Y., Wang, C.M., Juan, T.K., Chen, W.T., Liao, C.Y., He, Q., Xiao, S., Kung, W.T., Guo, G.Y., Zhou, L., Tsai, D.P.: High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12(12), 6223–6229 (2012)

    [25] [25] Yu, Y.F., Zhu, A.Y., Paniagua-Domínguez, R., Fu, Y.H., Lukyanchuk, B., Kuznetsov, A.I.: High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9(4), 412–418 (2015)

    [26] [26] Chen, F.T., Craighead, H.G.: Diffractive lens fabricated with mostly zeroth-order gratings. Opt. Lett. 21(3), 177–179 (1996)

    [27] [27] Chen, F.T., Craighead, H.G.: Diffractive phase elements based on two-dimensional artificial dielectrics. Opt. Lett. 20(2), 121–123 (1995)

    [28] [28] Lalanne, P., Astilean, S., Chavel, P., Cambril, E., Launois, H.: Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081–1083 (1998)

    [29] [29] Lalanne, P., Astilean, S., Chavel, P., Cambril, E., Launois, H.: Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A: 16(5), 1143–1156 (1999)

    [30] [30] Yin, L., Vlasko-Vlasov, V.K., Pearson, J., Hiller, J.M., Hua, J., Welp, U., Brown, D.E., Kimball, C.W.: Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5(7), 1399–1402 (2005)

    [31] [31] Liu, Z., Steele, J.M., Srituravanich, W., Pikus, Y., Sun, C., Zhang, X.: Focusing surface plasmons with a plasmonic lens. Nano Lett. 5(9), 1726–1729 (2005)

    [32] [32] Huang, F.M., Zheludev, N., Chen, Y., Abajo, F.: Focusing of light by a nanohole array. Appl. Phys. Lett. 90(9), 091119 (2007)

    [33] [33] Aieta, F., Genevet, P., Yu, N., Kats, M.A., Gaburro, Z., Capasso, F.: Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12(3), 1702–1706 (2012)

    [34] [34] Chen, X., Huang, L., Mühlenbernd, H., Li, G., Bai, B., Tan, Q., Jin, G., Qiu, C.W., Zhang, S., Zentgraf, T.: Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3(1), 1198 (2012)

    [35] [35] Pors, A., Nielsen, M.G., Eriksen, R.L., Bozhevolnyi, S.I.: Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13(2), 829–834 (2013)

    [36] [36] Fattal, D., Li, J., Peng, Z., Fiorentino, M., Beausoleil, R.G.: Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4(7), 466–470 (2010)

    [37] [37] Lin, D., Fan, P., Hasman, E., Brongersma, M.L.: Dielectric gradient metasurface optical elements. Science 345(6194), 298–302 (2014)

    [38] [38] Khorasaninejad, M., Zhu, A.Y., Roques-Carmes, C., Chen, W.T., Oh, J., Mishra, I., Devlin, R.C., Capasso, F.: Polarizationinsensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)

    [39] [39] Memarzadeh, B., Mosallaei, H.: Array of planar plasmonic scatterers functioning as light concentrator. Opt. Lett. 36(13), 2569–2571 (2011)

    [40] [40] Pancharatnam, S.: Generalized theory of interference and its applications. Proc. Indian Acad. Sci. 44(6), 398–417 (1956)

    [41] [41] Berry, M.V.: The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34(11), 1401–1407 (1987)

    [42] [42] Lu, F., Sedgwick, F.G., Karagodsky, V., Chase, C., Chang-Hasnain, C.J.: Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18(12), 12606–12614 (2010)

    [43] [43] Arbabi, A., Horie, Y., Ball, A.J., Bagheri, M., Faraon, A.: Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6(1), 7069 (2015)

    [44] [44] West, P.R., Stewart, J.L., Kildishev, A.V., Shalaev, V.M., Shkunov, V.V., Strohkendl, F., Zakharenkov, Y.A., Dodds, R.K., Byren, R.: All-dielectric subwavelength metasurface focusing lens. Opt. Express 22(21), 26212–26221 (2014)

    [45] [45] Khorasaninejad, M., Crozier, K.B.: Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5(1), 5386 (2014)

    [46] [46] Zhan, A., Colburn, S., Trivedi, R., Fryett, T.K., Dodson, C.M., Majumdar, A.: Low-contrast dielectric metasurface optics. ACS Photonics 3(2), 209–214 (2016)

    [47] [47] Avayu, O., Almeida, E., Prior, Y., Ellenbogen, T.: Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8(1), 14992 (2017)

    [48] [48] Yuan, J., Yin, G., Jiang, W., Wu, W., Ma, Y.: Design of mechanically robust metasurface lenses for RGB colors. J. Opt. 19(10), 105002 (2017)

    [49] [49] Khorasaninejad, M., Aieta, F., Kanhaiya, P., Kats, M.A., Genevet, P., Rousso, D., Capasso, F.: Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15(8), 5358–5362 (2015)

    [50] [50] Lin, D., Holsteen, A.L., Maguid, E., Wetzstein, G., Kik, P.G., Hasman, E., Brongersma, M.L.: Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16(12), 7671–7676 (2016)

    [51] [51] Li, K., Guo, Y., Pu, M., Li, X., Ma, X., Zhao, Z., Luo, X.: Dispersion controlling meta-lens at visible frequency. Opt. Express 25(18), 21419–21427 (2017)

    [52] [52] Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraon, A.: Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3(6), 628–633 (2016)

    [53] [53] Aieta, F., Kats, M.A., Genevet, P., Capasso, F.: Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347(6228), 1342–1345 (2015)

    [54] [54] Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraon, A.: High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express 24(16), 18468–18477 (2016)

    [55] [55] Arbabi, E., Li, J., Hutchins, R.J., Kamali, S.M., Arbabi, A., Horie, Y., Van Dorpe, P., Gradinaru, V., Wagenaar, D.A., Faraon, A.: Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett. 18(8), 4943–4948 (2018)

    [56] [56] Eisenbach, O., Avayu, O., Ditcovski, R., Ellenbogen, T.: Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23(4), 3928–3936 (2015)

    [57] [57] Fan, J.A.: Freeform metasurface design based on topology optimization. MRS Bull. 45(3), 196–201 (2020)

    [58] [58] Lin, Z., Liu, V., Pestourie, R., Johnson, S.G.: Topology optimization of freeform large-area metasurfaces. Opt. Express 27(11), 15765–15775 (2019)

    [59] [59] Liu, Z., Zhu, D., Rodrigues, S.P., Lee, K.T., Cai, W.: Generative model for the inverse design of metasurfaces. Nano Lett. 18(10), 6570–6576 (2018)

    [60] [60] Pestourie, R., Pérez-Arancibia, C., Lin, Z., Shin, W., Capasso, F., Johnson, S.G.: Inverse design of large-area metasurfaces. Opt. Express 26(26), 33732–33747 (2018)

    [61] [61] Lin, Z., Roques-Carmes, C., Christiansen, R.E., Soljacic, M., Johnson, S.G.: Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration. Appl. Phys. Lett. 118(4), 041104 (2021)

    [62] [62] Molesky, S., Lin, Z., Piggott, A.Y., Jin, W., Vuckovic, J., Rodriguez, A.W.: Inverse design in nanophotonics. Nat. Photonics 12(11), 659–670 (2018)

    [63] [63] Wang, P., Mohammad, N., Menon, R.: Chromatic-aberrationcorrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6(1), 21545 (2016)

    [64] [64] Hu, J., Liu, C.H., Ren, X., Lauhon, L.J., Odom, T.W.: Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 10(11), 10275–10282 (2016)

    [65] [65] Phan, T., Sell, D., Wang, E.W., Doshay, S., Edee, K., Yang, J., Fan, J.A.: High-efficiency, large-area, topology-optimized metasurfaces. Light, Science & Applications 8(1), 48 (2019)

    [66] [66] Chung, H., Miller, O.D.: High-NA achromatic metalenses by inverse design. Opt. Express 28(5), 6945–6965 (2020)

    [67] [67] Khorasaninejad, M., Shi, Z., Zhu, A.Y., Chen, W.T., Sanjeev, V., Zaidi, A., Capasso, F.: Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)

    [68] [68] Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraon, A.: Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4(6), 625–632 (2017)

    [69] [69] Wang, S., Wu, P.C., Su, V.C., Lai, Y.C., Hung Chu, C., Chen, J.W., Lu, S.H., Chen, J., Xu, B., Kuan, C.H., Li, T., Zhu, S., Tsai, D.P.: Broadband achromatic optical metasurface devices. Nat. Commun. 8(1), 187 (2017)

    [70] [70] Wang, S., Wu, P.C., Su, V.C., Lai, Y.C., Chen, M.K., Kuo, H.Y., Chen, B.H., Chen, Y.H., Huang, T.T., Wang, J.H., Lin, R.M., Kuan, C.H., Li, T., Wang, Z., Zhu, S., Tsai, D.P.: A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)

    [71] [71] Lin, R.J., Su, V.C., Wang, S., Chen, M.K., Chung, T.L., Chen, Y.H., Kuo, H.Y., Chen, J.W., Chen, J., Huang, Y.T., Wang, J.H., Chu, C.H., Wu, P.C., Li, T., Wang, Z., Zhu, S., Tsai, D.P.: Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14(3), 227–231 (2019)

    [72] [72] Chen, W.T., Zhu, A.Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., Capasso, F.: A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)

    [73] [73] Hsiao, H.H., Chen, Y.H., Lin, R.J., Wu, P.C., Wang, S., Chen, B.H., Tsai, D.P.: Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Advanced Optical Materials 6(12), 1800031 (2018)

    [74] [74] Shrestha, S., Overvig, A.C., Lu, M., Stein, A., Yu, N.: Broadband achromatic dielectric metalenses. Light Sci. Appl. 7(1), 85 (2018)

    [75] [75] Fan, Z.B., Qiu, H.Y., Zhang, H.L., Pang, X.N., Zhou, L.D., Liu, L., Ren, H., Wang, Q.H., Dong, J.W.: A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 8(1), 67 (2019)

    [76] [76] Chen, W.T., Zhu, A.Y., Sisler, J., Bharwani, Z., Capasso, F.: A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355(2019)

    [77] [77] Chen, W.T., Zhu, A.Y., Sisler, J., Huang, Y.W., Yousef, K.M.A., Lee, E., Qiu, C.W., Capasso, F.: Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)

    [78] [78] Zhang, X., Li, Q., Liu, F., Qiu, M., Sun, S., He, Q., Zhou, L.: Controlling angular dispersions in optical metasurfaces. Light Sci. Appl 9(1), 76 (2020)

    [79] [79] Qiu, M., Jia, M., Ma, S., Sun, S., He, Q., Zhou, L.: Angular dispersions in terahertz metasurfaces: physics and applications. Phys. Rev. Appl. 9(5), 054050 (2018)

    [80] [80] Aieta, F., Genevet, P., Kats, M., Capasso, F.: Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21(25), 31530–31539 (2013)

    [81] [81] Arbabi, A., Arbabi, E., Kamali, S.M., Horie, Y., Han, S., Faraon, A.: Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7(1), 13682 (2016)

    [82] [82] Groever, B., Chen, W.T., Capasso, F.: Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)

    [83] [83] Kim, C., Kim, S.J., Lee, B.: Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Opt. Express 28(12), 18059–18076 (2020)

    [84] [84] He, D., Guo, Y., Luo, X., Zhang, F., Wang, Y., Li, X., Wang, C., Li, Z., Ma, X., Zhao, Z., Pu, M.: Polarization-insensitive meta-lens doublet with large view field in the ultraviolet region. In: 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics. SPIE, 108411A (2019)

    [85] [85] Tang, D., Chen, L., Liu, J., Zhang, X.: Achromatic metasurface doublet with a wide incident angle for light focusing. Opt. Express 28(8), 12209–12218 (2020)

    [86] [86] Fan, C.Y., Lin, C.P., Su, G.J.: Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci. Rep. 10(1), 15677 (2020)

    [87] [87] Shalaginov, M.Y., An, S., Yang, F., Su, P., Lyzwa, D., Agarwal, A.M., Zhang, H., Hu, J., Gu, T.: Single-element diffractionlimited fisheye metalens. Nano Lett. 20(10), 7429–7437 (2020)

    [88] [88] Kalvach, A., Szabó, Z.: Aberration-free flat lens design for a wide range of incident angles. J. Optical Soc. Am. 33(2), A66–A71 (2016)

    [89] [89] Engelberg, J., Zhou, C., Mazurski, N., Bar-David, J., Kristensen, A., Levy, U.: Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 9(2), 361–370 (2020)

    [90] [90] Zhang, F., Pu, M., Li, X., Ma, X., Guo, Y., Gao, P., Yu, H., Gu, M., Luo, X.: Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater. 33(11), e2008157 (2021)

    [91] [91] Chen, C., Chen, P., Xi, J., Huang, W., Li, K., Liang, L., Shi, F., Shi, J.: On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv. 10(11), 115213 (2020)

    [92] [92] Martins, A., Li, K., Li, J., Liang, H., Conteduca, D., Borges, B.H.V., Krauss, T.F., Martins, E.R.: On metalenses with arbitrarily wide field of view. ACS Photonics 7(8), 2073–2079 (2020)

    [93] [93] Pu, M., Li, X., Guo, Y., Ma, X., Luo, X.: Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25(25), 31471–31477 (2017)

    [94] [94] Guo, Y., Ma, X., Pu, M., Li, X., Zhao, Z., Luo, X.: High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Advanced Optical Materials 6(19), 1800592 (2018)

    [95] [95] Liu, W., Li, Z., Cheng, H., Tang, C., Li, J., Zhang, S., Chen, S., Tian, J.: Metasurface enabled wide-angle fourier lens. Adv. Mater. 30(23), e1706368 (2018)

    [96] [96] Kingslake, R.: A History of the Photographic Lens. Academic Press, Boston (1989)

    [97] [97] Xu, B., Li, H., Gao, S., Hua, X., Yang, C., Chen, C., Yan, F., Zhu, S., Li, T.: Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics 2(6), 1–8 (2020)

    [98] [98] Zou, X., Zheng, G., Yuan, Q., Zang, W., Chen, R., Li, T., Li, L., Wang, S., Wang, Z., Zhu, S.: Imaging based on metalenses. PhotoniX 1(1), 2 (2020)

    [99] [99] Chen, C., Song, W., Chen, J.W., Wang, J.H., Chen, Y.H., Xu, B., Chen, M.K., Li, H., Fang, B., Chen, J., Kuo, H.Y., Wang, S., Tsai, D.P., Zhu, S., Li, T.: Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl. 8(1), 99 (2019)

    [100] [100] Zhao, F., Lu, R., Chen, X., Jin, C., Chen, S., Shen, Z., Zhang, C., Yang, Y.: Metalens-assisted system for underwater imaging. Laser Photonics Rev. 15(8), 2100097 (2021)

    [101] [101] Khorasaninejad, M., Chen, W.T., Oh, J., Capasso, F.: Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16(6), 3732–3737 (2016)

    [102] [102] Zhu, A.Y., Chen, W.T., Sisler, J., Yousef, K.M.A., Lee, E., Huang, Y.W., Qiu, C.W., Capasso, F.: Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Advanced Optical Materials 7(14), 1801144 (2019)

    [103] [103] Faraji-Dana, M., Arbabi, E., Arbabi, A., Kamali, S.M., Kwon, H., Faraon, A.: Compact folded metasurface spectrometer. Nature. Communications 9(1), 4196 (2018)

    [104] [104] Yesilkoy, F., Arvelo, E.R., Jahani, Y., Liu, M., Tittl, A., Cevher, V., Kivshar, Y., Altug, H.: Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13(6), 390–396 (2019)

    [105] [105] Shaltout, A., Liu, J., Kildishev, A., Shalaev, V.: Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2(10), 860–863 (2015)

    [106] [106] Li, Z., Palacios, E., Butun, S., Aydin, K.: Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 15(3), 1615–1621 (2015)

    [107] [107] Tan, X., Zhang, H., Li, J., Wan, H., Guo, Q., Zhu, H., Liu, H., Yi, F.: Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11(1), 5245 (2020)

    [108] [108] Yan, C., Yang, K.Y., Martin, O.J.F.: Fano-resonance-assisted metasurface for color routing. Light Sci. Appl. 6(7), e17017 (2017)

    [109] [109] Chen, B.H., Wu, P.C., Su, V.C., Lai, Y.C., Chu, C.H., Lee, I.C., Chen, J.W., Chen, Y.H., Lan, Y.C., Kuan, C.H., Tsai, D.P.: GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17(10), 6345–6352 (2017)

    [110] [110] Barelli, M., Mazzanti, A., Giordano, M.C., Della Valle, G., Buatier de Mongeot, F.: Color routing via cross-polarized detuned plasmonic nanoantennas in large-area metasurfaces. Nano Lett. 20(6), 4121–4128 (2020)

    [111] [111] Solomon, M.L., Hu, J., Lawrence, M., García-Etxarri, A., Dionne, J.A.: Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 6(1), 43–49 (2019)

    [112] [112] Khorasaninejad, M., Chen, W.T., Zhu, A.Y., Oh, J., Devlin, R.C., Rousso, D., Capasso, F.: Multispectral chiral imaging with a metalens. Nano Lett. 16(7), 4595–4600 (2016)

    [113] [113] Droulias, S., Bougas, L.: Absolute chiral sensing in dielectric metasurfaces using signal reversals. Nano Lett. 20(8), 5960–5966 (2020)

    [114] [114] Chang, C.C., Kort-Kamp, W.J.M., Nogan, J., Luk, T.S., Azad, A.K., Taylor, A.J., Dalvit, D.A.R., Sykora, M., Chen, H.T.: Hightemperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18(12), 7665–7673 (2018)

    [115] [115] Yao, Y., Liu, H., Wu, W.: Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 115(3), 713–719 (2014)

    [116] [116] Shameli, M.A., Yousefi, L.: Absorption enhancement in thin-film solar cells using an integrated metasurface lens. J. Opt. Soc. Am. B: Opt. Phys. 35(2), 223–230 (2018)

    [117] [117] Kamali, S.M., Arbabi, E., Arbabi, A., Horie, Y., Faraon, A.: Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 10(6), 1002–1008 (2016)

    [118] [118] Ee, H.S., Agarwal, R.: Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16(4), 2818–2823 (2016)

    [119] [119] Shirmanesh, G.K., Sokhoyan, R., Wu, P.C., Atwater, H.A.: Electro-optically tunable multifunctional metasurfaces. ACS Nano 14(6), 6912–6920 (2020)

    [120] [120] She, A., Zhang, S., Shian, S., Clarke, D.R., Capasso, F.: Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), 9957 (2018)

    [121] [121] Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraji-Dana, M., Faraon, A.: MEMS-tunable dielectric metasurface lens. Nature. Communications 9(1), 812 (2018)

    [122] [122] Yin, X., Steinle, T., Huang, L., Taubner, T., Wuttig, M., Zentgraf, T., Giessen, H.: Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6(7), e17016 (2017)

    [123] [123] Shalaginov, M.Y., An, S., Zhang, Y., Yang, F., Su, P., Liberman, V., Chou, J.B., Roberts, C.M., Kang, M., Rios, C., Du, Q., Fowler, C., Agarwal, A., Richardson, K.A., Rivero-Baleine, C., Zhang, H., Hu, J., Gu, T.: Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 12(1), 1225 (2021)

    Tools

    Get Citation

    Copy Citation Text

    Yongli He, Boxiang Song, Jiang Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW ARTICLE

    Received: Oct. 9, 2021

    Accepted: Nov. 28, 2021

    Published Online: Jan. 18, 2023

    The Author Email: Boxiang Song (songboxiang@hust.edu.cn)

    DOI:10.1007/s12200-022-00017-4

    Topics