OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 1(2022)

Research Progress on the Detection of Circulating Tumor Cells on Microfluidic Chips

GAO Rong-ke1,2, ZHOU You-qiang1, GUAN Zi-hao2, ZHOU Wen-bo2, MA Chao2, YU Yi-yue2, LI Shuo2, CHEN Xiao-zhe2, JIA Hua-kun2, LU Yang2, XIA Hao-jie1, and YU Lian-dong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(90)

    [1] [1] Pantel K, Alix-panabièRes C. Circulating tumour cells in cancer patients: Challenges and perspectives[J]. Trends in Molecular Medicine, 2010, 16(9): 398-406.

    [2] [2] MING Y, LI Y, XING H, et al. Circulating tumor cells: From theory to nanotechnology-based detection[J]. Front Pharmacol, 2017, 8: 35.

    [3] [3] Banko P, Lee S Y, Nagygyorgy V, et al. Technologies for circulating tumor cell separation from whole blood [J]. J Hematol. Oncol., 2019, 12(1): 48.

    [4] [4] Vaidyanathan R, Soon R H, ZHANG P, et al. Cancer diagnosis: From tumor to liquid biopsy and beyond [J]. Lab Chip, 2018, 19(1): 11-34.

    [5] [5] Parkinson D R, Dracopoli N, Petty B G. Considerations in the development of circulating tumor cell technology for clinical use[J]. Journal of Translational Medicine, 2012, 10: 138.

    [6] [6] Palmirotta R, Lovero D, Cafforio P, et al. Liquid biopsy of cancer: A multimodal diagnostic tool in clinical oncology[J]. Ther. Adv. Med. Oncol., 2018, 10: 1758835918794630.

    [7] [7] Georgakopoulos-soares I, Chartoumpekis D V, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer[J]. Front. Oncol., 2020, 10: 499.

    [8] [8] Burinaru T A, Avram M, Avram A, et al. Detection of circulating tumor cells using microfluidics[J]. ACS Comb. Sci., 2018, 20(3): 107-26.

    [9] [9] Carey T R, Cotner K L, LI B, et al. Developments in label-free microfluidic methods for single-cell analysis and sorting [J]. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(1): e1529.

    [10] [10] WU L, ZHU L, HUANG M, et al. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells[J]. TrAC Trends in Analytical Chemistry, 2019, 117: 69-77.

    [11] [11] Leversha M A, Han J, Asgari Z, et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer[J]. Clin. Cancer Res., 2009, 15(6): 2091-7.

    [12] [12] SATO K. Microdevice in cellular pathology: Microfluidic platforms for fluorescence in situ hybridization and analysis of circulating tumor cells[J]. Analytical Sciences, 2015, 31(9): 867-73.

    [13] [13] KIM T J, MOON H W, KANG S, et al. Urovysion FISH could be effective and useful method to confirm the identity of cultured circulating tumor cells from bladder cancer patients[J]. J. Cancer, 2019, 10(14): 3259-3266.

    [14] [14] Campton D E, Ramirez A B, Nordberg J J, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining[J]. BMC Cancer, 2015, 15: 360.

    [15] [15] CHE J, YU V, GARON E B, et al. Biophysical isolation and identification of circulating tumor cells[J]. Lab on a Chip, 2017, 17(8): 1452-61.

    [16] [16] LI X-R, ZHOU Y-G. Electrochemical detection of circulating tumor cells: A mini review[J]. Electrochemistry Communications, 2021, 124: 106949.

    [17] [17] LU C, HAN J, SUN X, et al. Electrochemical detection and point-of-care testing for circulating tumor cells: Current techniques and future potentials[J]. Sensors (Basel), 2020, 20(21): 1-28.

    [18] [18] WU X, XIA Y, HUANG Y, et al. Improved SERS-active nanoparticles with various shapes for CTC detection without enrichment process with supersensitivity and high specificity[J]. ACS Appl. Mater Interfaces, 2016, 8(31): 19928-19938.

    [19] [19] SHEN Z, WU A, CHEN X. Current detection technologies for circulating tumor cells[J]. Chem Soc Rev, 2017, 46(8): 2038-2056.

    [20] [20] LIN J, ZHENG J, WU A. An efficient strategy for circulating tumor cell detection: Surface-enhanced Raman spectroscopy[J]. J. Mater. Chem. B, 2020, 8(16): 3316-3326.

    [21] [21] LU H, ZHU L, ZHANG C, et al. Mixing assisted “Hot Spots” occupying SERS strategy for highly sensitive in situ study[J]. Anal Chem, 2018, 90(7): 4535-4543.

    [22] [22] YANG K, ZONG S, ZHANG Y, et al. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing[J]. ACS Appl. Mater Interfaces, 2020, 12(1): 1395-1403.

    [23] [23] Esmaeilsabzali H, Payer R T M, GUO Y, et al. Development of a microfluidic platform for size-based hydrodynamic enrichment and PSMA-targeted immunomagnetic isolation of circulating tumour cells in prostate cancer[J]. Biomicrofluidics, 2019, 13(1): 014110.

    [24] [24] Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450(7173): 1235-1239.

    [25] [25] Stott S L, Hsu C H, Tsukrov D I, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(43): 18392-18397.

    [26] [26] Ahmed M G, Abate M F, SONG Y, et al. Isolation, detection, and antigen-based profiling of circulating tumor cells using a size-dictated immunocapture chip [J]. Angew. Chem. Int. Ed. Engl., 2017, 56(36): 10681-10685.

    [27] [27] SONG Y, SHI Y, HUANG M, et al. Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(8): 2236-2240.

    [28] [28] CHEN K, DOPICO P, VARILLAS J, et al. Integration of lateral filter arrays with immunoaffinity for circulating-tumor-cell isolation[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(23): 7606-7610.

    [29] [29] CHANG C L, HUANG W, JALAL S I, et al. Circulating tumor cell detection using a parallel flow micro-aperture chip system[J]. Lab Chip, 2015, 15(7): 1677-1688.

    [30] [30] WU L L, TANG M, ZHANG Z L, et al. Chip-assisted single-cell biomarker profiling of heterogeneous circulating tumor cells using multifunctional nanospheres[J]. Anal. Chem., 2018, 90(17): 10518-10526.

    [31] [31] MENG Q F, CHENG Y X, HUANG Q, et al. Biomimetic immunomagnetic nanoparticles with minimal nonspecific biomolecule adsorption for enhanced isolation of circulating tumor cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(32): 28732-28739.

    [32] [32] CHANG Z M, ZHANG R, YANG C, et al. Cancer-leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells[J]. Nanoscale, 2020, 12(37): 19121-19128.

    [33] [33] Dieguez L, Winter M A, Pocock K J, et al. Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS[J]. Analyst, 2015, 140(10): 3565-3572.

    [34] [34] CHU C H, LIU R, Ozkaya-ahmadov T, et al. Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device[J]. Lab Chip, 2019, 19(20): 3427-3437.

    [35] [35] LEE J, SUL O, LEE S B. Enrichment of circulating tumor cells from whole blood using a microfluidic device for sequential physical and magnetophoretic separations[J]. Micromachines (Basel), 2020, 11(5): 481.

    [36] [36] XUE M, XIANG A, GUO Y, et al. Dynamic Halbach array magnet integrated microfluidic system for the continuous-flow separation of rare tumor cells[J]. RSC Advances, 2019, 9(66): 38496-38504.

    [37] [37] TRAN Q D, KONG T F, HU D, et al. Deterministic sequential isolation of floating cancer cells under continuous flow [J]. Lab Chip, 2016, 16(15): 2813-2819.

    [38] [38] Indhu R, Radha S, Manikandan E, et al. Micromachining of biocompatible polymer substrate for cancer cell separation applications[J]. Microsystem Technologies, 2018, 25(6): 2187-2190.

    [39] [39] LIU Y, XU H, LI T, et al. Microtechnology-enabled filtration-based liquid biopsy: Challenges and practical considerations[J]. Lab Chip, 2021, 21(6): 994-1015.

    [40] [40] Ozkumur E, Shah A, Ciciliano J, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells[J]. Science Translational Medicine, 2013, 5: 173.

    [41] [41] Warkiani M E, GUAN G, LUAN K B, et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells[J]. Lab Chip, 2014, 14(1): 128-37.

    [42] [42] HUANG L R, COX E C, AUSTIN R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304: 987-990.

    [43] [43] HUANG L, COX E, AUSTIN R, et al. Continuous particle separation through deterministic lateral displacement [J]. Science, 2004, 304(5673): 987-990.

    [44] [44] MOON H S, KWON K, KIM S I, et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)[J]. Lab Chip, 2011, 11(6): 1118-1125.

    [45] [45] Gascoyne P R, Noshari J, Anderson T J, et al. Isolation of rare cells from cell mixtures by dielectrophoresis[J]. Electrophoresis, 2009, 30(8): 1388-1398.

    [46] [46] Karthick S, Pradeep P N, Kanchana P, et al. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis[J]. Lab Chip, 2018, 18(24): 3802-3813.

    [47] [47] WU Z, JIANG H, ZHANG L, et al. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers[J]. Lab Chip, 2019, 19(23): 3922-3930.

    [48] [48] WU Z, CHEN B, WU Y, et al. Scaffold-free generation of heterotypic cell spheroids using acoustofluidics[J]. Lab Chip, 2021, 21(18): 3498-3508.

    [49] [49] HU D, LIU H, TIAN Y, et al. Sorting technology for circulating tumor cells based on microfluidics[J]. ACS Comb. Sci., 2020, 22(12): 701-711.

    [50] [50] FAN X, JIA C, YANG J, et al. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells[J]. Biosens. Bioelectron., 2015, 71: 380-386.

    [51] [51] LIU Y, LI T, XU M, et al. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples[J]. Lab Chip, 2018, 19(1): 68-78.

    [52] [52] KIM Y T, PARK K J, KIM S, et al. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood[J]. Talanta, 2018, 179: 207-12.

    [53] [53] TANG F, SHAO Z, NI M, et al. Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method[J]. Applied Physics A, 2019, 125(1): 55.1-55.7.

    [54] [54] Loutherback K, Chou K S, Newman J, et al. Improved performance of deterministic lateral displacement arrays with triangular posts[J]. Microfluidics and Nanofluidics, 2010, 9(6): 1143-9.

    [55] [55] LIU Z, HUANG F, DU J, et al. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure[J]. Biomicrofluidics, 2013, 7(1): 11801.

    [56] [56] LIU Z, ZHANG W, HUANG F, et al. High throughput capture of circulating tumor cells using an integrated microfluidic system[J]. Biosens Bioelectron, 2013, 47: 113-9.

    [57] [57] XIANG N, WANG J, LI Q, et al. Precise size-based cell separation via the coupling of inertial microfluidics and deterministic lateral displacement[J]. Anal. Chem., 2019, 91(15): 10328-10334.

    [58] [58] LIU Z, HUANG Y, LIANG W, et al. Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells[J]. Lab Chip, 2021, 21(15): 2881-2891.

    [59] [59] DI CARLO D. Inertial microfluidics[J]. Lab Chip, 2009, 9(21): 3038-46.

    [60] [60] HUANG D, SHI X, QIAN Y, et al. Rapid separation of human breast cancer cells from blood using a simple spiral channel device[J]. Analytical Methods, 2016, 8(30): 5940-8.

    [61] [61] Bogseth A, Zhou J, Papautsky I. Evaluation of performance and tunability of a co-flow inertial microfluidic device[J]. Micromachines (Basel), 2020, 11(3): 287.

    [62] [62] DHAR M, LAM J N, WALSER T, et al. Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(40): 9986-91.

    [63] [63] GAO R, CHENG L, WANG S, et al. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics[J]. Talanta, 2020, 207: 120261.

    [64] [64] Gupta V, Jafferji I, Garza M, et al. ApoStream(), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood[J]. Biomicrofluidics, 2012, 6(2): 24133.

    [65] [65] Shim S, Stemke-hale K, Tsimberidou A M, et al. Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis [J]. Biomicrofluidics, 2013, 7(1): 11807.

    [66] [66] Tajik P, Saidi M S, Kashaninejad N, et al. Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles[J]. Industrial & Engineering Chemistry Research, 2019, 59(9): 3772-83.

    [67] [67] LUO T, FAN L, ZENG Y, et al. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation[J]. Lab Chip, 2018, 18(11): 1521-32.

    [68] [68] NIE X, LUO Y, SHEN P, et al. High-throughput dielectrophoretic cell sorting assisted by cell sliding on scalable electrode tracks made of conducting-PDMS[J]. Sensors and Actuators B: Chemical, 2021, 327: 128873.

    [69] [69] KUNG Y C, NIAZI K R, CHIOU P Y. Tunnel dielectrophoresis for ultra-high precision size-based cell separation [J]. Lab Chip, 2021, 21(6): 1049-60.

    [70] [70] CHU C H, LIU R, Ozkaya-ahmadov T, et al. Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device[J]. Sci. Rep., 2021, 11(1): 20583.

    [71] [71] JHI J H, KIM G H, PARK S J, et al. Circulating tumor cells and TWIST expression in patients with metastatic gastric cancer: A preliminary study[J]. J. Clin. Med., 2021, 10(19): 4481-4496.

    [72] [72] LEE H J, KIM G H, PARK S J, et al. Clinical significance of TWIST-Positive circulating tumor cells in patients with esophageal squamous cell carcinoma[J]. Gut Liver, 2021, 15(4): 553-561.

    [73] [73] SHEN W, SONG Y, Burklund A, et al. Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood[J]. Biomed Microdevices, 2018, 20(4): 99.

    [74] [74] ZHANG R, LE B, XU W, et al. Magnetic “squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection [J]. Small Methods, 2019, 3(2): 1800474.

    [75] [75] LI Q, CUI S, XU Y, et al. Consecutive sorting and phenotypic counting of CTCs by an optofluidic flow cytometer [J]. Anal. Chem., 2019, 91(21): 14133-14140.

    [76] [76] WANG J, LI Y, WANG R, et al. A fully automated and integrated microfluidic system for efficient CTC detection and its application in hepatocellular carcinoma screening and prognosis[J]. ACS Appl. Mater. Interfaces, 2021, 13(25): 30174-30186.

    [77] [77] CHEN Y H, Pulikkathodi A K, MA Y D, et al. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells[J]. Lab Chip, 2019, 19(4): 618-625.

    [78] [78] SUZUKI T, KAJI N, YASAKI H, et al. Mechanical low-pass filtering of cells for detection of circulating tumor cells in whole blood [J]. Anal. Chem., 2020, 92(3): 2483-2491.

    [79] [79] LI F, HU S, ZHANG R, et al. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: Clinical application and simulation[J]. ACS Appl. Mater Interfaces, 2019, 11(9): 8704-8713.

    [80] [80] KONG C, HU M, Weerakoon-ratnayake K M, et al. Label-free counting of affinity-enriched circulating tumor cells (CTCs) using a thermoplastic micro-Coulter counter (muCC)[J]. Analyst, 2020, 145(5): 1677-1686.

    [81] [81] LI J, LIN X, ZHANG Z, et al. Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles[J]. Biosens. Bioelectron., 2019, 126: 332-338.

    [82] [82] SHEN C, LIU S, LI X, et al. Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification [J]. Anal. Chem., 2019, 91(18): 11614-11619.

    [83] [83] LUO J, LIANG D, ZHAO D, et al. Photoelectrochemical detection of circulating tumor cells based on aptamer conjugated Cu2O as signal probe[J]. Biosen. Bioelectron., 2020, 151: 111976.

    [84] [84] YAN S, CHEN P, ZENG X, et al. Integrated multifunctional electrochemistry microchip for highly efficient capture, release, lysis, and analysis of circulating tumor cells[J]. Anal. Chem., 2017, 89(22): 12039-12044.

    [85] [85] Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-169.

    [86] [86] WANG X, QIAN X, BEITLER J J, et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles [J]. Cancer Res., 2011, 71(5): 1526-1532.

    [87] [87] WU X, LUO L, YANG S, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood [J]. ACS Appl Mater Interfaces, 2015, 7(18): 9965-9971.

    [88] [88] PANG Y, WANG C, XIAO R, et al. Dual-selective and dual-enhanced sers nanoprobes strategy for circulating hepatocellular carcinoma cells detection [J]. Chemistry, 2018, 24(27): 7060-7067.

    [89] [89] RUAN H, WU X, YANG C, et al. A Supersensitive CTC analysis system based on triangular silver nanoprisms and SPION with function of capture, enrichment, detection, and release [J]. ACS Biomater. Sci. Eng., 2018, 4(3): 1073-1082.

    [90] [90] GAO R, ZHAN C, WU C, et al. Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip [J]. Lab Chip, 2021, 21(20): 3888-3898.

    CLP Journals

    [1] GAO Jun, CHI Hao, QI Zhi-qiang, XIONG Bo-tao. Study of Tuning and Frequency Locking Characteristics of 100 kHz Diode Laser Seed[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(5): 61

    [2] LIU Jun-han, XIONG Chang-xin, QU Tian-liang, ZHANG Xi, WANG Chan, ZHAO Ming-qiang. Precision Machining Technology of High Q Value Hemispherical Resonator[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(4): 117

    Tools

    Get Citation

    Copy Citation Text

    GAO Rong-ke, ZHOU You-qiang, GUAN Zi-hao, ZHOU Wen-bo, MA Chao, YU Yi-yue, LI Shuo, CHEN Xiao-zhe, JIA Hua-kun, LU Yang, XIA Hao-jie, YU Lian-dong. Research Progress on the Detection of Circulating Tumor Cells on Microfluidic Chips[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 31, 2022

    Accepted: --

    Published Online: Oct. 29, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics