Spectroscopy and Spectral Analysis, Volume. 42, Issue 10, 3226(2022)

Early Detection of Tomato Gray Mold Disease With Multi-Dimensional Random Forest Based on Hyperspectral Image

Rong-hua GAO1、*, Lu FENG1、1; 2; *;, Yue ZHANG3、3;, Ji-dong YUAN3、3;, Hua-rui WU1、1; 2;, and Jing-qiu GU1、1; 2;
Author Affiliations
  • 11. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • 33. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    References(4)

    [7] Sun Jun, Wu Xiaohong, Zhou Xin et al[D]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 215(2019).

    [9] Pan Y C, Yang Guijun, Zhang Ning et al[D]. Remote Sensing, 12, 3188(2020).

    [10] He Y, Xie C, Yang C[D]. Computers and Electronics in Agriculture, 135, 154(2017).

    [11] Lucas B, Pelletier C, Shifaz A et al[D]. Data Mining and Knowledge Discovery, 33, 607(2019).

    Tools

    Get Citation

    Copy Citation Text

    Rong-hua GAO, Lu FENG, Yue ZHANG, Ji-dong YUAN, Hua-rui WU, Jing-qiu GU. Early Detection of Tomato Gray Mold Disease With Multi-Dimensional Random Forest Based on Hyperspectral Image[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3226

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 11, 2021

    Accepted: Mar. 28, 2022

    Published Online: Nov. 23, 2022

    The Author Email: Rong-hua GAO (gaorh@nercita.org.cn)

    DOI:10.3964/j.issn.1000-0593(2022)10-3226-09

    Topics