Remote Sensing Technology and Application, Volume. 39, Issue 2, 362(2024)

Extraction of Crop Information in Cloudy Areas based on Optical and Radar Remote Sensing Images

Xingxia ZHOU*, Yingjie WANG, and Pan YANG
Author Affiliations
  • The Third Institute of Photogrammetry and Remote Sensing,Ministry of Natural Resources,Chengdu 610100,China
  • show less
    Figures & Tables(14)
    Location of the study area and distribution of crop sample sites
    Technique flowchart
    The evaluation chart of segmentation scales
    Comparison of the multi-scale segmentation
    Multi-temporal vegetation indices curves
    Spectral characteristics curves of March 27, 2021
    Time series diagram of backscattering coefficient of summer crops in study area
    Classification result in study area
    • Table 1. Phenological periods of major crops in study area

      View table
      View in Article

      Table 1. Phenological periods of major crops in study area

      月份4月5月6月7月8月9月10月
      大春
      水稻播种出苗移栽出叶孕穗乳熟成熟
      玉米播种出苗拔节抽雄吐丝乳熟成熟
      大豆播种发芽期开花期结荚期鼓粒期成熟期
      月份10月11月12月1月2月3月4月
      小春
      油菜播种幼苗期蕾薹期开花期成熟
      小麦播种出苗返青起身拔节开花乳熟成熟
      土豆播种休眠期发芽期幼苗期发棵期结薯期成熟
    • Table 2. Satellite image acquisition time in study area

      View table
      View in Article

      Table 2. Satellite image acquisition time in study area

      获取卫星数据等级获取日期作物物候期
      Sentinel-2L2A2021-3-27小麦:拔节期;油菜:开花期;土豆:结薯期
      Sentinel-2L2A2021-5-1水稻:出苗期;玉米:出苗期;大豆:发芽期
      Sentinel-2L2A2021-8-9水稻:乳熟期;玉米:乳熟期;大豆:结荚期
      Sentinel-1L1 GRD2021-5-5水稻:移栽期;玉米:出苗期;大豆:发芽期
      Sentinel-1L1 GRD2021-6-4水稻:出叶期;玉米:拔节期;大豆:发芽期
      Sentinel-1L1 GRD2021-7-16水稻:孕穗期;玉米:乳熟期;大豆:结荚期
      Sentinel-1L1 GRD2021-8-21水稻:乳熟期;玉米:成熟期;大豆:鼓粒期
      Sentinel-1L1 GRD2021-9-2水稻:成熟期;玉米:收割; 大豆:成熟期
    • Table 3. Numbers of pixels of major classes

      View table
      View in Article

      Table 3. Numbers of pixels of major classes

      类型水稻小麦油菜蔬菜瓜果玉米大豆土豆林地裸地水体
      训练样本像素个数1 9502 0587301 0025995194105262 4961 149
      验证样本像素个数8358823124302572221752251 069493
    • Table 4. Vegetation index and expression

      View table
      View in Article

      Table 4. Vegetation index and expression

      光谱指数计算公式对应Sentinel-2波段
      NDVIρnir-ρred/ρnir+ρredBand8, Band4
      NDVI705ρ750-ρ705/ρ750+ρ705Band6, Band5
      CIρ750-800/ρ690-725-1Band7, Band5
    • Table 5. Time series of texture features of summer crops in study area

      View table
      View in Article

      Table 5. Time series of texture features of summer crops in study area

      时相05-0506-0407-16
      作物大豆玉米水稻大豆玉米水稻大豆玉米水稻
      VH极化协同性0.0630.0580.0660.0660.0760.0760.0660.0590.058
      对比度542.940805.612516.419447.363659.497398.219549.634998.754595.226
      均值126.654126.739126.805126.901126.699126.903126.684127.417126.779
      方差41.91842.33241.96441.82542.06142.19441.51642.69241.868
      VV极化协同性0.0670.0670.0760.0660.0590.0770.0650.0670.074
      对比度681.822952.752563.469768.137845.567502.185754.706824.972565.951
      均值126.642126.864126.705126.484126.447126.895126.992126.298126.696
      方差41.97142.39441.56841.71842.07241.90941.72042.62341.598
      时相08-2109-02
      作物大豆玉米水稻大豆玉米水稻
      VH极化协同性0.0560.0590.0570.0560.0500.055
      对比度627.889523.769617.753650.683798.284677.142
      均值126.424127.043126.716126.353126.829126.717
      方差41.37042.17341.60941.31342.59141.546
      VV极化协同性0.0680.0600.0710.0670.0750.071
      对比度713.262963.489614.435846.636779.433638.578
      均值126.581126.282126.797126.581126.515126.415
      方差41.12842.67541.74741.81642.73140.929
    • Table 6. The classification accuracy in study area

      View table
      View in Article

      Table 6. The classification accuracy in study area

      类别生产者精度/%用户精度/%
      水体95.6893.86
      裸地89.7390.52
      果树86.9589.78
      蔬菜瓜果68.2161.20
      小麦-水稻93.0992.59
      油菜-水稻94.389.15
      土豆-玉米70.3560.7
      土豆-大豆62.4758.98
      总精度/%85.49
      Kappa系数0.81
    Tools

    Get Citation

    Copy Citation Text

    Xingxia ZHOU, Yingjie WANG, Pan YANG. Extraction of Crop Information in Cloudy Areas based on Optical and Radar Remote Sensing Images[J]. Remote Sensing Technology and Application, 2024, 39(2): 362

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 19, 2022

    Accepted: --

    Published Online: Aug. 13, 2024

    The Author Email: ZHOU Xingxia (99268265@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.2.0362

    Topics