Journal of Infrared and Millimeter Waves, Volume. 39, Issue 5, 576(2020)
[1] Liu C, Liu P, Yang C et al. Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial[J]. Carbon, 142, 354-362(2019).
[2] Smith D R, Pendry J B, Wiltshire M C K, and Metamaterials[J]. Science, 305, 788-792(2004).
[3] He X, Yao Y, Yang X et al. Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications[J]. Opt. Commun, 410, 206-210(2018).
[4] Badioli M, Woessner A, Tielrooij K J et al. Phonon-mediated mid-Infrared photoresponse of grapheme[J]. Nano Lett, 14, 6374-6381(2014).
[5] Liang T, Gibson Q, Ali M et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2[J]. Nat. Mater, 14, 280-284(2015).
[6] Zhong S M, He S L, and Ultrathin, REPORTS SCIENTIFIC[J]. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials, 3, 2083-2087(2013).
[7] Yong Z D, Zhang S L, Gong C S et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications[J]. Scientific Reports, 6, 24063-24069(2016).
[8] Mei J, Ma G C, Yang M et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature communications, 3, 756-762(2011).
[9] Zhang Y P, Li T T, Chen Q et al. Independently tunable dualband perfect absorber based on graphene at mid-infrared frequencies[J]. Scientific Reports, 5, 18463-18470(2015).
[10] Cao G T, Li H J, Zhan S P et al. Uniformtheoretical description of plasmon-induced transparency in plasmonic stubwaveguide[J]. Opt. Lett, 39, 216-219(2014).
[11] Deng Y, Cao G T, Wu Y W et al. Theoretical description of dynamic transmission characteristics in MDM waveguide aperture-side-coupled with ring cavity[J]. Plasmonics, 10, 1537-1543(2015).
[12] Lai G, Liang R S, Zhang Y J et al. Doubleplasmonic nanodisks design for electromagnetically induced transparencyand slow light[J]. Opt. Express, 23, 6554-6561(2015).
[13] He Z, Li H, Li B et al. Theoretical analysis of ultrahighfigure of merit sensing in plasmonic waveguides with a multimode stub[J]. Opt.Lett, 41, 5206-5209(2016).
[14] Huang Y, Min C J, Veronis G. Broadband near total light absorption innon-PT-symmetric waveguide-cavity systems[J]. Opt. Express, 24, 22219-22231(2016).
[15] Chen L, Liu Y M, Yu Z Y et al. Numerical analysis of anear-infrared plasmonic refractive index sensor with high figure of meritbased on a fillet cavity[J]. Opt. Express, 24, 9975-9983(2016).
[16] Yankovich A B, Verre R, Olsén E et al. Electron-Energy Loss Study of Nonlocal Effects in Connected Plasmonic Nanoprisms[J]. ACS Nano, 11, 4265-4274(2017).
[17] Zeng C, Cui Y D. Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide[J]. Opt Commun, 290, 188-191(2013).
[18] Huang L L, Chen X Z, Bai B F et al. Dependent Directional Surface Plasmon Polariton Excitation Using A Metasurface with Interfacial Phase Discontinuity[J]. Light-Sci. Appl, 2, 70-76(2013).
[19] Fu H X, Li S L, Wang Y, al Let. Generation of polarization-locked vector solitons in mode-locked thulium fiber laser[J]. IEEE Photonics J, 10, 1500308-1500316(2018).
[20] Li S L, Wang Y L, Jiao R Z et al. Fano resonances based on multimode and degenerate mode interference in plasmonic[J]. Opt. Exp, 25, 3525-3533(2017).
[21] Chen Z, Yu L, Fano Multiple[J]. IEEE Photonics J, 6, 1-8(2014).
[22] Li C, Li S L, Wang Y L et al. Multiple Fano Resonances Based on Plasmonic Resonator System With End-Coupled Cavities for High-Performance Nanosensor[J]. IEEE Photonics J, 9, 1-9(2017).
[23] Wang Q, Ouyang Z B, Lin M et al. Independently tunable Fano resonance based on the coupled hetero cavities in a plasmonic MIM system[J]. Materials, 11, 1675-1684(2018).
[24] Zheng G, Zhang H, Bu L et al. Tunable Fano resonances in midinfrared waveguide-coupled otto configuration[J]. Plasmonics, 13, 215-220(2018).
[25] Yia X C, Tiana J P, Yanga R C, Fano Tunable[J]. Optik - International Journal for Light and Electron Optics, 171, 139-148(2018).
[26] Kotov O V, Lozovik Y E, response Dielectric[J]. Phys. Rev. B, 93, 235417(2016).
[27] Timusk T, Carbotte J P, Homes C C et al. Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity[J]. Phys. Rev. B, 87, 235121(2013).
[28] Zand I, Mahigir A, Pakizeh T et al. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators[J]. Opt. Express, 20, 7516-7525(2012).
[29] Smith D R, Schult S, Markos P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Phys.Rev. B, 65, 195104-195108(2002).
[30] Piao X J, Yu S, Koo S et al. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures[J]. Opt. Express, 19, 10907-10912(2001).
[31] Yao Y, Kats M A, Genevet P et al. Broad electrical tuning of grapheneloaded plasmonic antennas[J]. Nano Lett, 13, 1257-1264(2013).
[32] Li Z, Yu N, of Modulation[J]. Appl. Phys. Lett, 102, 131108(2013).
[33] Hwang J, Roh J W, tunable Electrically[J]. Opt.Express, 25, 25071-25078(2017).
Get Citation
Copy Citation Text
Min ZHONG, Xian-Chun SHI.
Category: Materials and Devices
Received: Dec. 22, 2019
Accepted: --
Published Online: Dec. 29, 2020
The Author Email: Min ZHONG (zhongmin2012hy@163.com)