Molecular Plant, Volume. 18, Issue 8, 1294(2025)

Structural insights into a plant-conserved DHFRTS reveal a selective herbicide target

Haywood Joel, Breese Karen J., McDougal Daniel P., Verdonk Callum, Partridge Abigail, Lo Adrian F., Zhang Jingjing, Yang Wen-Chao, Bruning John B., Saliba Kevin J., Bond Charles S., Stubbs Keith A., and Mylne Joshua S.
References(119)

[1] [1] Adamczyk, A.J., Cao, J., Kamerlin, S.C.L., and Warshel, A.(2011). Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc. Natl. Acad. Sci. USA108:14115-14120.

[2] [2] Anderson, A.C.(2005). Two crystal structures of dihydrofolate reductase-thymidylate synthase fromCryptosporidium hominisreveal proteinligand interactions including a structural basis for observed antifolate resistance. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.61:258-262.

[3] [3] Appleman, J.R., Prendergast, N., Delcamp, T.J., Freisheim, J.H., and Blakley, R.L.(1988). Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. J. Biol. Chem.263:10304-10313.

[4] [4] Aragao, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N.P., Ericsson, D.J., Gee, C.L., Macedo, S., Mudie, N., et al.(2018). MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat.25:885-891.

[5] [5] Atreya, C.E., and Anderson, K.S.(2004). Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) fromCryptosporidium hominis: a paradigm shift for ts activity and channeling behavior. J. Biol. Chem.279:18314-18322.

[6] [6] Beckie, H.J., and Tardif, F.J.(2012). Herbicide cross resistance in weeds. Crop Prot.35:15-28.

[7] [7] Begley, D.W., Edwards, T.E., Raymond, A.C., Smith, E.R., Hartley, R.C., Abendroth, J., Sankaran, B., Lorimer, D.D., Myler, P.J., Staker, B.L., et al.(2011). Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase fromBabesia bovis. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.67:1070-1077.

[8] [8] Ben-Shem, A., Frolow, F., and Nelson, N.(2003). Crystal structure of plant photosystem I. Nature426:630-635.

[9] [9] Beroza, P., Crawford, J.J., Ganichkin, O., Gendelev, L., Harris, S.F., Klein, R., Miu, A., Steinbacher, S., Klingler, F.M., and Lemmen, C.(2022). Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat. Commun.13:6447.

[10] [10] Bertini, I., Calderone, V., Fragai, M., Luchinat, C., and Talluri, E.(2009). Structural Basis of Serine/Threonine Phosphatase Inhibition by the Archetypal Small Molecules Cantharidin and Norcantharidin. J. Med. Chem.52:4838-4843.

[11] [11] Bhabha, G., Ekiert, D.C., Jennewein, M., Zmasek, C.M., Tuttle, L.M., Kroon, G., Dyson, H.J., Godzik, A., Wilson, I.A., and Wright, P.E.(2013). Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat. Struct. Mol. Biol.20:1243-1249.

[12] [12] Blakley, R.L., and Benkovic, S.J.(1984). Folates and Pterins, Chemistry and Biochemistry of Folates (Wiley).

[13] [13] Boehr, D.D., McElheny, D., Dyson, H.J., and Wright, P.E.(2006). The dynamic energy landscape of dihydrofolate reductase catalysis. Science313:1638-1642.

[14] [14] Bolduc, O.R., Lambert-Lanteigne, P., Colin, D.Y., Zhao, S.S., Proulx, C., Boeglin, D., Lubell, W.D., Pelletier, J.N., Fthire, J., Ong, H., et al.(2011). Modified peptide monolayer binding His-tagged biomolecules for small ligand screening with SPR biosensors. Analyst136:3142-3148.

[15] [15] Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C., and Kraut, J.(1982). Crystal structures ofEscherichia coliandLactobacillus caseidihydrofolate reductase refined at 1.7 resolution. I. General features and binding of methotrexate. J. Biol. Chem.257:13650-13662.

[16] [16] Bonin, J.P., Sapienza, P.J., Wilkerson, E., Goldfarb, D., Wang, L., Herring, L., Chen, X., Major, M.B., and Lee, A.L.(2019). Positive cooperativity in substrate binding by human thymidylate synthase. Biophys. J.117:1074-1084.

[17] [17] Bonin, J.P., Sapienza, P.J., and Lee, A.L.(2022). Dynamic allostery in substrate binding by human thymidylate synthase. eLife11:e79915.

[18] [18] Brausemann, A., Gemmecker, S., Koschmieder, J., Ghisla, S., Beyer, P., and Einsle, O.(2017). Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation. Structure25:1222-1232.e3.

[19] [19] Broser, M., Glckner, C., Gabdulkhakov, A., Guskov, A., Buchta, J., Kern, J., Mh, F., Dau, H., Saenger, W., and Zouni, A.(2011). Structural Basis of Cyanobacterial Photosystem II Inhibition by the Herbicide Terbutryn. J. Biol. Chem.286:15964-15972.

[20] [20] Butina, D.(1999). Unsupervised data base clustering based on daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets. J. Chem. Inf. Comput. Sci.39:747-750.

[21] [21] Byrne, A.J., Bright, S.A., McKeown, J.P., O'Brien, J.E., Twamley, B., Fayne, D., Williams, D.C., and Meegan, M.J.(2020). Design, synthesis and biochemical evaluation of novel ethanoanthracenes and related compounds to target Burkitt's lymphoma. Pharmaceuticals13:16.

[22] [22] Carreras, C.W., and Santi, D.V.(1995). The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem.64:721-762.

[23] [23] Chalabi, K.A., and Gutteridge, W.E.(1977). Presence and properties of thymidylate synthase in trypanosomatids. Biochim. Biophys. Acta481:71-79.

[24] [24] Chapman-Smith, A., Turner, D.L., Cronan, J.E., Jr., Morris, T.W., and Wallace, J.C.(1994). Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem. J.302:881-887.

[25] [25] Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C.(2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66:12-21.

[26] [26] Chen, D., Jansson, A., Sim, D., Larsson, A., and Nordlund, P.(2017). Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J. Biol. Chem.292:13449-13458.

[27] [27] Corradi, H.R., Corrigall, A.V., Boix, E., Mohan, C.G., Sturrock, E.D., Meissner, P.N., and Acharya, K.R.(2006). Crystal Structure of Protoporphyrinogen Oxidase from Myxococcus xanthus and Its Complex with the Inhibitor Acifluorfen. J. Biol. Chem.281:38625-38633.

[28] [28] Corral, M.G., Leroux, J., Stubbs, K.A., and Mylne, J.S.(2017). Herbicidal properties of antimalarial drugs. Sci. Rep.7:45871-45879.

[29] [29] Corral, M.G., Haywood, J., Stehl, L.H., Stubbs, K.A., Murcha, M.W., and Mylne, J.S.(2018). Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance. Plant J.95:727-742.

[30] [30] Dasgupta, T., and Anderson, K.S.(2008). Probing the role of parasite-specific, distant structural regions on communication and catalysis in the bifunctional thymidylate synthase-dihydrofolate reductase fromPlasmodium falciparum. Biochemistry47:1336-1345.

[31] [31] Davies, J.F., Delcamp, T.J., Prendergast, N.J., Ashford, V.A., Freisheim, J.H., and Kraut, J.(1990). Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry29:9467-9479.

[32] [32] Donner, E., Soares Magalhes, R.J., Barnes, A.C., Jex, A., Jarocki, V., Drigo, B., Djordjevic, S., and Ashbolt, N.J.(2024). Introducing CRC SAAFE: a new Cooperative Research Centre (CRC) focused on managing AMR in agriculture and the environment. Microbiol. Aust.45:68-73.

[33] [33] Duke, S.O., and Dayan, F.E.(2022). The search for new herbicide mechanisms of action: Is there a 'holy grail. Pest Manag. Sci.78:1303-1313.

[34] [34] Duke, S.O.(2012). Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci.68:505-512.

[35] [35] Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K.(2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66:486-501.

[36] [36] Fairhead, M., and Howarth, M.(2015). Site-specific biotinylation of purified proteins using BirA. Methods Mol. Biol.1266:171-184.

[37] [37] Ferone, R., and Roland, S.(1980). Dihydrofolate reductase: thymidylate synthase, a bifunctional polypeptide fromCrithidia fasciculata. Proc. Natl. Acad. Sci. USA77:5802-5806.

[38] [38] Finer-Moore, J.S., Lee, T.T., and Stroud, R.M.(2018). A single mutation traps a half-sites reactive enzyme in midstream, explaining asymmetry in hydride transfer. Biochemistry57:2786-2795.

[39] [39] Fink, E.A., Xu, J., Hbner, H., Braz, J.M., Seemann, P., Avet, C., Craik, V., Weikert, D., Schmidt, M.F., Webb, C.M., et al.(2022). Structure-based discovery of nonopioid analgesics acting through the (2A)-adrenergic receptor. Science377:eabn7065.

[40] [40] Gandy, M.N., Corral, M.G., Mylne, J.S., and Stubbs, K.A.(2015). An interactive database to explore herbicide physicochemical properties. Org. Biomol. Chem.13:5586-5590.

[41] [41] Gibson, L.M., Lovelace, L.L., and Lebioda, L.(2008). The R163K mutant of human thymidylate synthase is stabilized in an active conformation: structural asymmetry and reactivity of cysteine 195. Biochemistry47:4636-4643.

[42] [42] Gloriam, D.E.(2019). Bigger is better in virtual drug screens. Nature566:193-194.

[43] [43] Gorelova, V., De Lepeleire, J., Van Daele, J., Pluim, D., Me, C., Cuypers, A., Leroux, O., Rbeill, F., Schellens, J.H.M., Blancquaert, D., et al.(2017). Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell29:2831-2853.

[44] [44] Gorgulla, C., Boeszoermenyi, A., Wang, Z.F., Fischer, P.D., Coote, P.W., Padmanabha Das, K.M., Malets, Y.S., Radchenko, D.S., Moroz, Y.S., Scott, D.A., et al.(2020). An open-source drug discovery platform enables ultra-large virtual screens. Nature580:663-668.

[45] [45] Gould, F., Brown, Z.S., and Kuzma, J.(2018). Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science360:728-732.

[46] [46] Greisman, J.B., Dalton, K.M., Brookner, D.E., Klureza, M.A., Sheehan, C.J., Kim, I.S., Henning, R.W., Russi, S., and Hekstra, D.R.(2024). Perturbative diffraction methods resolve a conformational switch that facilitates a two-step enzymatic mechanism. Proc. Natl. Acad. Sci. USA121:e2313192121.

[47] [47] Gu, S., Smith, M.S., Yang, Y., Irwin, J.J., and Shoichet, B.K.(2021). Ligand strain energy in large library docking. J. Chem. Inf. Model.61:4331-4341.

[48] [48] Hardy, L.W., Finer-Moore, J.S., Montfort, W.R., Jones, M.O., Santi, D.V., and Stroud, R.M.(1987). Atomic structure of thymidylate synthase: target for rational drug design. Science235:448-455.

[49] [49] Haywood, J., Vadlamani, G., Stubbs, K.A., and Mylne, J.S.(2021). Antibiotic resistance lessons for the herbicide resistance crisis. Pest Manag. Sci.77:3807-3814.

[50] [50] Heap, I.(2020). The international survey of herbicide resistant weeds. Available from http://www.weedscience.org/.

[51] [51] Hoarau, M., Sermmai, P., Varatthan, T., Thiabma, R., Jantra, T., Rattanajak, R., Vitsupakorn, D., Vanichtanankul, J., Saepua, S., Yuthavong, Y., et al.(2023). Discovery of rigid biphenylPlasmodium falciparumDHFR inhibitors using a fragment linking strategy. RSC Med. Chem.14:1755-1766.

[52] [52] Holm, L., Laiho, A., Trnen, P., and Salgado, M.(2023). DALI shines a light on remote homologs: One hundred discoveries. Protein Sci.32: e4519.

[53] [53] Horvath, D.P., Clay, S.A., Swanton, C.J., Anderson, J.V., and Chao, W.S.(2023). Weed-induced crop yield loss: a new paradigm and new challenges. Trends Plant Sci.28:567-582.

[54] [54] Irwin, J.J., Tang, K.G., Young, J., Dandarchuluun, C., Wong, B.R., Khurelbaatar, M., Moroz, Y.S., Mayfield, J., and Sayle, R.A.(2020). ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model.60:6065-6073.

[55] [55] Ivanetich, K.M., and Santi, D.V.(1990). Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J.4:1591-1597.

[56] [56] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zdek, A., Potapenko, A., et al.(2021). Highly accurate protein structure prediction with AlphaFold. Nature596:583-589.

[57] [57] Kabsch, W.(2010). XDS. Acta Crystallogr. D Biol. Crystallogr.66:125-132.

[58] [58] Kahlau, S., Schrder, F., Freigang, J., Laber, B., Lange, G., Passon, D., Kleeen, S., Lohse, M., Schulz, A., von Koskull-Dring, P., et al.(2020). Aclonifen targets the solanesyl diphosphate synthase, representing a novel mode of action for herbicides. Pest Manag. Sci.76:3377-3388.

[59] [59] Kang, I.-H., Emptage, R.P., Kim, S.-I., and Gutteridge, S.(2023). A Novel mechanism of herbicide action through disruption of pyrimidine biosynthesis. Proc. Natl. Acad. Sci. USA120:e2313197120.

[60] [60] Katz, L.A., Grant, J.R., Parfrey, L.W., and Burleigh, J.G.(2012). Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol.61:653-660.

[61] [61] Kay, B.K., Thai, S., and Volgina, V.V.(2009). High-throughput biotinylation of proteins. Methods Mol. Biol.498:185-196.

[62] [62] Kazmirchuk, T.D.D., Burnside, D.J., Wang, J., Jagadeesan, S.K., Al-Gafari, M., Silva, E., Potter, T., Bradbury-Jost, C., Ramessur, N.B., Ellis, B., et al.(2024). Cymoxanil disrupts RNA synthesis through inhibiting the activity of dihydrofolate reductase. Sci. Rep.14:11695.

[63] [63] Kholodar, S.A., Finer-Moore, J.S., Swiderek, K., Arafet, K., Moliner, V., Stroud, R.M., and Kohen, A.(2021). Caught in action: X-ray structure of thymidylate synthase with noncovalent intermediate analog. Biochemistry60:1243-1247.

[64] [64] Knighton, D.R., Kan, C.C., Howland, E., Janson, C.A., Hostomska, Z., Welsh, K.M., and Matthews, D.A.(1994). Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat. Struct. Biol.1:186-194.

[65] [65] Kozlowski, R., Zhao, J., and Dyer, R.B.(2021). Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation. Proc. Natl. Acad. Sci. USA118:e2014592118.

[66] [66] Kumar, V.P., Cisneros, J.A., Frey, K.M., Castellanos-Gonzalez, A., Wang, Y., Gangjee, A., White, A.C., Jr., Jorgensen, W.L., and Anderson, K.S.(2014). Structural studies provide clues for analog design of specific inhibitors ofCryptosporidium hoministhymidylate synthase-dihydrofolate reductase. Bioorg. Med. Chem. Lett.24:4158-4161.

[67] [67] Kuyper, L.F., Roth, B., Baccanari, D.P., Ferone, R., Beddell, C.R., Champness, J.N., Stammers, D.K., Dann, J.G., Norrington, F.E., and Baker, D.J.(1985). Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues. J. Med. Chem.28:303-311.

[68] [68] Laskowski, R.A., Jabonska, J., Pravda, L., Vaekov, R.S., and Thornton, J.M.(2018). PDBsum: Structural summaries of PDB entries. Protein Sci.27:129-134.

[69] [69] Lazar, G., Zhang, H., and Goodman, H.M.(1993). The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes ofArabidopsis thaliana. Plant J.3:657-668.

[70] [70] Liang, P.H., and Anderson, K.S.(1998). Substrate channeling and domain-domain interactions in bifunctional thymidylate synthase-dihydrofolate reductase. Biochemistry37:12195-12205.

[71] [71] Lim, S.L., Voon, C.P., Guan, X., Yang, Y., Gardestrm, P., and Lim, B.L.(2020).In plantastudy of photosynthesis and photorespiration using NADPH and NADH/NAD(+) fluorescent protein sensors. Nat. Commun.11:3238.

[72] [72] Liu, C.T., Hanoian, P., French, J.B., Pringle, T.H., Hammes-Schiffer, S., and Benkovic, S.J.(2013). Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc. Natl. Acad. Sci. USA110:10159-10164.

[73] [73] Llewellyn, R., Ronning, D., Clarke, M., Mayfield, A., Walker, S., and Ouzman, J.(2016). Impact of Weeds in Australian Grain Production(Canberra, ACT, Australia: Grains Research and Development Corporation).

[74] [74] Lonhienne, T., Low, Y.S., Garcia, M.D., Croll, T., Gao, Y., Wang, Q., Brillault, L., Williams, C.M., Fraser, J.A., McGeary, R.P., et al.(2020). Structures of fungal and plant acetohydroxyacid synthases. Nature586:317-321.

[75] [75] Lyu, J., Wang, S., Balius, T.E., Singh, I., Levit, A., Moroz, Y.S., O'Meara, M.J., Che, T., Algaa, E., Tolmachova, K., et al.(2019). Ultra-large library docking for discovering new chemotypes. Nature566:224-229.

[76] [76] Maley, F., Pedersen-Lane, J., and Changchien, L.(1995). Complete restoration of activity to inactive mutants ofEscherichia colithymidylate synthase: evidence thatE.colithymidylate synthase is a half-the-sites activity enzyme. Biochemistry34:1469-1474.

[77] [77] Martucci, W.E., Rodriguez, J.M., Vargo, M.A., Marr, M., Hamilton, A.D., and Anderson, K.S.(2013). Exploring novel strategies for AIDS protozoal pathogens: -helix mimetics targeting a key allosteric protein-protein interaction inC.hominisTS-DHFR. Medchemcomm4:1247-1256.

[78] [78] Matthews, D.A., Alden, R.A., Bolin, J.T., Freer, S.T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M., and Hoogsteen, K.(1977). Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science197:452-455.

[79] [79] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J.(2007). Phaser crystallographic software. J. Appl. Crystallogr.40:658-674.

[80] [80] McDougal, D.P., Rajapaksha, H., Pederick, J.L., and Bruning, J.B.(2023). warpDOCK: Large-scale virtual drug discovery using cloud infrastructure. ACS Omega8:29143-29149.

[81] [81] Meek, T.D., Garvey, E.P., and Santi, D.V.(1985). Purification and characterization of the bifunctional thymidylate synthetase-dihydrofolate reductase from methotrexate-resistantLeishmania tropica. Biochemistry24:678-686.

[82] [82] Mettenleiter, T.C., Markotter, W., Charron, D.F., Adisasmito, W.B., Almuhairi, S., Behravesh, C.B., Bilivogui, P., Bukachi, S.A., Casas, N., Becerra, N.C., et al.(2023). The one health high-level expert panel (OHHLEP). One Health Outlook5:18.

[83] [83] Metzger, V.T., Eun, C., Kekenes-Huskey, P.M., Huber, G., and McCammon, J.A.(2014). Electrostatic channeling inP.falciparumDHFR-TS: Brownian dynamics and Smoluchowski modeling. Biophys. J.107:2394-2402.

[84] [84] Mhashal, A.R., Vardi-Kilshtain, A., Kohen, A., and Major, D.T.(2017). The role of the Met(20) loop in the hydride transfer inEscherichia colidihydrofolate reductase. J. Biol. Chem.292:14229-14239.

[85] [85] Mhashal, A.R., Pshetitsky, Y., Cheatum, C.M., Kohen, A., and Major, D.T.(2018). Evolutionary Effects on Bound Substrate p K(a) in Dihydrofolate Reductase. J. Am. Chem. Soc.140:16650-16660.

[86] [86] Moi, D., Bernard, C., Steinegger, M., Nevers, Y., Langleib, M., and Dessimoz, C.(2023). Structural phylogenetics unravels the evolutionary diversification of communication systems in gram-positive bacteria and their viruses. Preprint at bioRxiv. https://doi.org/10.1101/2023.09.19.558401v2.

[87] [87] O'Neil, R.H., Lilien, R.H., Donald, B.R., Stroud, R.M., and Anderson, A.C.(2003). Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase. J. Biol. Chem.278:52980-52987.

[88] [88] Osborn, M.J., and Huennekens, F.M.(1958). Enzymatic reduction of dihydrofolic acid. J. Biol. Chem.233:969-974.

[89] [89] Oyen, D., Fenwick, R.B., Stanfield, R.L., Dyson, H.J., and Wright, P.E.(2015). Cofactor-Mediated Conformational Dynamics Promote Product Release FromEscherichia coliDihydrofolate Reductase via an Allosteric Pathway. J. Am. Chem. Soc.137:9459-9468.

[90] [90] Pei, J., Kim, B.H., and Grishin, N.V.(2008). PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res.36:2295-2300.

[91] [91] Pea, M.M.O., Xing, Y.Y., Koli, S., and Berger, F.G.(2006). Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase. Biochem. J.394:355-363.

[92] [92] Perry, K.M., Fauman, E.B., Finer-Moore, J.S., Montfort, W.R., Maley, G.F., Maley, F., and Stroud, R.M.(1990). Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins8:315-333.

[93] [93] Roberts, F., Roberts, C.W., Johnson, J.J., Kyle, D.E., Krell, T., Coggins, J.R., Coombs, G.H., Milhous, W.K., Tzipori, S., Ferguson, D.J., et al.(1998). Evidence for the shikimate pathway in apicomplexan parasites. Nature393:801-805.

[94] [94] Sapienza, P.J., Popov, K.I., Mowrey, D.D., Falk, B.T., Dokholyan, N.V., and Lee, A.L.(2019). Inter-active site communication mediated by the dimer interface -sheet in the half-the-sites enzyme, thymidylate synthase. Biochemistry58:3302-3313.

[95] [95] Sawaya, M.R., and Kraut, J.(1997). Loop and subdomain movements in the mechanism ofEscherichia colidihydrofolate reductase: crystallographic evidence. Biochemistry36:586-603.

[96] [96] Schnell, J.R., Dyson, H.J., and Wright, P.E.(2004). Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct.33:119-140.

[97] [97] Schnbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N.S., and Kabsch, W.(2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA98:1376-1380.

[98] [98] Schweitzer, B.I., Dicker, A.P., and Bertino, J.R.(1990). Dihydrofolate reductase as a therapeutic target. FASEB J.4:2441-2452.

[99] [99] Senkovich, O., Schormann, N., and Chattopadhyay, D.(2009). Structures of dihydrofolate reductase-thymidylate synthase ofTrypanosoma cruziin the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Acta Crystallogr. D Biol. Crystallogr.65:704-716.

[100] [100] Sharma, H., Landau, M.J., Vargo, M.A., Spasov, K.A., and Anderson, K.S.(2013). First three-dimensional structure ofToxoplasma gondiithymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling. Biochemistry52:7305-7317.

[101] [101] Smilkstein, M., Sriwilaijaroen, N., Kelly, J.X., Wilairat, P., and Riscoe, M.(2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother.48:1803-1806.

[102] [102] Sorenson, A.E., Askin, S.P., and Schaeffer, P.M.(2015). In-gel detection of biotin-protein conjugates with a green fluorescent streptavidin probe. Anal. Methods7:2087-2092.

[103] [103] Spry, C., Macuamule, C., Lin, Z., Virga, K.G., Lee, R.E., Strauss, E., and Saliba, K.J.(2013). Pantothenamides are potent, on-target inhibitors ofPlasmodium falciparumgrowth when serum pantetheinase is inactivated. PLoS One8:e54974.

[104] [104] Stechmann, A., and Cavalier-Smith, T.(2002). Rooting the eukaryote tree by using a derived gene fusion. Science297:89-91.

[105] [105] Stein, R.M., Kang, H.J., McCorvy, J.D., Glatfelter, G.C., Jones, A.J., Che, T., Slocum, S., Huang, X.P., Savych, O., Moroz, Y.S., et al.(2020). Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature579:609-614.

[106] [106] Stourac, J., Vavra, O., Kokkonen, P., Filipovic, J., Pinto, G., Brezovsky, J., Damborsky, J., and Bednar, D.(2019). Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res.47:414-422.

[107] [107] Stroud, R.M., and Finer-Moore, J.S.(2003). Conformational dynamics along an enzymatic reaction pathway: thymidylate synthase, "the movie". Biochemistry42:239-247.

[108] [108] Sukhoverkov, K.V., Corral, M.G., Leroux, J., Haywood, J., Johnen, P., Newton, T., Stubbs, K.A., and Mylne, J.S.(2021). Improved herbicide discovery using physico-chemical rules refined by antimalarial library screening. RSC Adv.11:8459-8467.

[109] [109] Tanramluk, D., Pakotiprapha, D., Phoochaijaroen, S., Chantravisut, P., Thampradid, S., Vanichtanankul, J., Narupiyakul, L., Akavipat, R., and Yuvaniyama, J.(2022). MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances. Structure30:181-189.e5.

[110] [110] Tashima, T.(2015). The structural use of carbostyril in physiologically active substances. Bioorg. Med. Chem. Lett.25:3415-3419.

[111] [111] Vadlamani, G., Sukhoverkov, K.V., Haywood, J., Breese, K.J., Fisher, M.F., Stubbs, K.A., Bond, C.S., and Mylne, J.S.(2022). Crystal structure ofArabidopsis thalianaHPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. Plant Commun.3:100322.

[112] [112] van Dooren, G.G., and Striepen, B.(2013). The algal past and parasite present of the apicoplast. Annu. Rev. Microbiol.67:271-289.

[113] [113] Vargo, M.A., Martucci, W.E., and Anderson, K.S.(2009). Disruption of the crossover helix impairs dihydrofolate reductase activity in the bifunctional enzyme TS-DHFR fromCryptosporidium hominis. Biochem. J.417:757-764.

[114] [114] Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., et al.(2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr.67:235-242.

[115] [115] Xiang, S., Usunow, G., Lange, G., Busch, M., and Tong, L.(2007). Crystal Structure of 1-Deoxy-d-xylulose 5-Phosphate Synthase, a Crucial Enzyme for Isoprenoids Biosynthesis. J. Biol. Chem.282:2676-2682.

[116] [116] Yang, C., Pflugrath, J.W., Camper, D.L., Foster, M.L., Pernich, D.J., and Walsh, T.A.(2004). Structural Basis for Herbicidal Inhibitor Selectivity Revealed by Comparison of Crystal Structures of Plant and Mammalian 4-Hydroxyphenylpyruvate Dioxygenases. Biochemistry43:10414-10423.

[117] [117] Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M.D., and Yuthavong, Y.(2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nat. Struct. Biol.10:357-365.

[118] [118] Zhang, K., and Rathod, P.K.(2002). Divergent regulation of dihydrofolate reductase between malaria parasite and human host. Science296:545-547.

[119] [119] Zhang, H., Tweel, B., and Tong, L.(2004). Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA101:5910-5915.

Tools

Get Citation

Copy Citation Text

Haywood Joel, Breese Karen J., McDougal Daniel P., Verdonk Callum, Partridge Abigail, Lo Adrian F., Zhang Jingjing, Yang Wen-Chao, Bruning John B., Saliba Kevin J., Bond Charles S., Stubbs Keith A., Mylne Joshua S.. Structural insights into a plant-conserved DHFRTS reveal a selective herbicide target[J]. Molecular Plant, 2025, 18(8): 1294

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 6, 2025

Accepted: Aug. 25, 2025

Published Online: Aug. 25, 2025

The Author Email:

DOI:10.1016/j.molp.2025.06.016

Topics