Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1610017(2021)
Underwater Image Enhancement Based on Multiscale Generative Adversarial Network
Fig. 5. Results of the compare experiment. (a) Original image; (b) P=4; (c) P=8; (d) P=12; (e) P=14
Fig. 9. Experimental of the color restoration. (a) Original image; (b) Lab; (c) UDCP; (d) CLAHE; (e) DehazeNet and HWD; (f) Uresnet; (g) MSGAN; (h) standard color card
Fig. 10. Reconstructed images of different algorithms. (a) Original image; (b) UDCP; (c) Lab; (d) DehazeNet and HWD; (e) DUIENet; (f) FUnIE-GAN; (g) Uresnet; (h) MSGAN
Fig. 11. Feature matching results of different algorithms. (a) Original image; (b) DUIENet; (c) FUnIE-GAN; (d) Uresnet; (e) MSGAN
|
|
|
|
Get Citation
Copy Citation Text
Sen Lin, Shiben Liu. Underwater Image Enhancement Based on Multiscale Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1610017
Category: Image Processing
Received: Sep. 28, 2020
Accepted: Dec. 27, 2020
Published Online: Aug. 19, 2021
The Author Email: Shiben Liu (liushiben310@163.com)