Resources Science, Volume. 42, Issue 6, 1040(2020)

The heterogeneity of regional energy shadow price and energy environment efficiency in China

Qingyou YAN1, Zengkan GUI1、*, Wenhua ZHANG1, and Lizhong CHEN2
Author Affiliations
  • 1School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • 2State Grid Corporation of China, Beijing 100031, China
  • show less
    Figures & Tables(9)
    [in Chinese]
    Energy environment efficiency under group-frontier and meta-frontier, 2000-2017
    Trends of technology gap in three types of areas in China, 2000-2017
    Trends of energy shadow price under group frontier in China, 2000-2017
    Trends of energy shadow price under meta frontier in China, 2000-2017
    • Table 1. Descriptive statistics of inputs and outputs

      View table
      View in Article

      Table 1. Descriptive statistics of inputs and outputs

      变量单位平均值最大值最小值标准差
      A组资本存量亿元33712.932177723.0151157.63233000.163
      劳动力万人2283.8346310.014330.9741705.803
      能源消费量万t标准煤11880.71732342.004479.9558389.987
      地区生产总值亿元14687.27862401.513526.82912816.087
      环境污染指数0.1930.5950.0130.154
      B组资本存量亿元25605.809141653.9742375.28224906.032
      劳动力万人3040.0196746.4321044.6241415.241
      能源消费量万t标准煤9909.74223647.1092329.0075124.148
      地区生产总值亿元8547.67829348.5831747.4425666.173
      环境污染指数0.2160.5090.0910.092
      C组资本存量亿元20801.614190365.189710.26529382.224
      劳动力万人1964.5395960.014238.5781530.583
      能源消费量万t标准煤11319.86838899.253897.2199259.562
      地区生产总值亿元6739.01351736.438294.5348783.717
      环境污染指数0.2670.7850.0140.190
    • Table 2. Decomposition and improvement potential of energy inefficiency in some selected provinces in China

      View table
      View in Article

      Table 2. Decomposition and improvement potential of energy inefficiency in some selected provinces in China

      地区ETolETIEMI改善策略地区ETolETIEMI改善策略
      技术管理技术管理
      A组北京0.2510.0000.251广西0.4150.3540.061
      天津0.3340.0000.334重庆0.4790.4160.063
      辽宁0.4380.0000.438四川0.5910.4490.141
      上海0.2930.0000.293陕西0.5640.4190.146
      江苏0.3690.0000.369平均0.4930.3800.113
      浙江0.3630.0000.363C组河北0.6740.3140.359
      福建0.2670.0000.267山西0.7960.1760.620
      广东0.0070.0000.007内蒙古0.6190.2350.384
      海南0.0370.0000.037山东0.5410.3330.207
      平均0.2620.0000.262贵州0.7340.1360.597
      B组吉林0.4750.2590.216云南0.5850.2890.296
      黑龙江0.5030.3450.158甘肃0.6190.1920.427
      安徽0.4850.4230.062青海0.3890.2660.123
      江西0.3530.3370.016宁夏0.5220.3320.190
      河南0.5500.4200.130新疆0.7020.1340.568
      湖北0.5690.3880.180平均0.6180.2410.377
      湖南0.4360.3630.073全国0.4650.2190.246
    • Table 3.

      Energy shadow price under group-frontier and meta-frontier of selected provinces in China, 2000-2017

      View table
      View in Article

      Table 3.

      Energy shadow price under group-frontier and meta-frontier of selected provinces in China, 2000-2017

      地区群组前沿共同前沿
      2000—20052006—20112012—20172000—20172000—20052006—20112012—20172000—2017
      A组北京0.6230.7551.2960.8910.6250.7581.3020.895
      天津0.4760.5620.6490.5620.4780.5740.6570.570
      辽宁0.3760.4550.6750.5020.3820.4580.6780.506
      上海0.5610.5740.6530.5960.5630.5760.6580.599
      江苏0.6300.6280.7290.6620.6360.6300.7290.665
      浙江0.5940.6960.7730.6880.6000.7020.7730.692
      福建0.6550.6940.9390.7630.6690.6990.9420.770
      广东0.7360.8250.9470.8360.7400.8300.9490.840
      海南0.7400.8060.9520.8330.7440.8210.9580.841
      平均0.5990.6660.8460.7040.6040.6720.8500.709
      B组吉林0.3190.5830.8820.5950.3470.6030.8930.614
      黑龙江0.3610.4240.6320.4720.4420.4710.7080.540
      安徽0.3820.5700.9180.6230.4830.6250.9590.689
      江西0.3720.5300.8420.5820.4720.6970.9750.715
      河南0.2580.5450.6610.4880.3220.5860.7330.547
      湖北0.4800.5310.8120.6080.5270.5500.8440.640
      湖南0.2150.4760.8000.4970.2890.5030.8450.546
      广西0.2720.4620.7230.4860.3150.6590.8940.623
      重庆0.5030.5560.7960.6180.5390.5770.8600.658
      四川0.4140.4570.7100.5270.4480.5150.7960.586
      陕西0.4510.5810.7480.5930.5010.6030.8240.643
      平均0.3660.5200.7750.5540.4260.5810.8480.619
      C组河北0.2610.3290.4460.3450.3700.4250.6740.490
      山西0.1740.2490.3520.2580.2070.3120.5080.343
      内蒙古0.1700.2560.3130.2460.2180.3680.5540.380
      山东0.2750.3300.4650.3570.4970.5560.7500.601
      贵州0.1960.2320.3770.2680.3090.4010.6500.453
      云南0.2610.2410.4410.3140.4570.5260.8200.601
      甘肃0.2060.2180.3680.2640.3450.4300.6550.477
      青海0.2770.3680.4150.3530.3510.3850.4880.408
      宁夏0.2650.2830.3190.2890.2650.3410.4440.350
      新疆0.2190.2330.2790.2430.3980.4240.4610.427
      平均0.2300.2740.3770.2940.3420.4170.6000.453
      全国平均0.3910.4820.6640.5120.4510.5530.7660.590
    • Table 4. Regression result of influencing factors of regional energy shadow price in China

      View table
      View in Article

      Table 4. Regression result of influencing factors of regional energy shadow price in China

      变量全国A组B组C组
      系数tP系数tP系数tP系数tP
      GI-0.268-1.5860.073-0.507-0.8800.202-0.388-1.9960.045-0.295-1.7030.072
      IS-0.089-1.5510.079-0.311-1.0450.181-0.279-2.0710.040-0.469-5.0630.000
      MR0.0121.4270.0990.0242.1440.0340.0010.0940.9250.0040.7260.239
      EE-0.027-5.0420.000-0.177-1.2460.116-0.032-2.4480.015-0.002-2.1810.037
      EC-0.536-6.0180.000-1.184-6.0950.000-0.521-4.3860.000-0.191-2.3550.020
    Tools

    Get Citation

    Copy Citation Text

    Qingyou YAN, Zengkan GUI, Wenhua ZHANG, Lizhong CHEN. The heterogeneity of regional energy shadow price and energy environment efficiency in China[J]. Resources Science, 2020, 42(6): 1040

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 30, 2019

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: GUI Zengkan (gzkmail@126.com)

    DOI:10.18402/resci.2020.06.03

    Topics